A364168 Numbers that can be written in more than one way in the form (j+2k)^2-(j+k)^2-j^2 with j,k>0.
15, 27, 32, 35, 36, 39, 51, 55, 60, 63, 64, 75, 84, 87, 91, 95, 96, 99, 100, 108, 111, 115, 119, 123, 128, 132, 135, 140, 143, 144, 147, 155, 156, 159, 160, 171, 175, 180, 183, 187, 192, 195, 196, 203, 204, 207, 215, 219, 220, 224, 228, 231, 235, 240, 243, 247, 252, 255
Offset: 1
Keywords
Examples
27 is a term since (6+2*3)^2 - (6+3)^2 - 6^2 = (20+2*7)^2 - (20+7)^2 - 20^2 = 27.
Links
- Project Euler, Problem 135: Same Differences.
Programs
-
Python
from math import isqrt def isok(h): if (h & 15) not in [0, 3, 4, 7, 11, 12, 15]: return False c = 0 for p in range(1, isqrt(h)+1): q, r = divmod(h,p) if r == 0 and (pq := p + q) & 3 == 0: t = pq >> 2; c += (t < p) + (p != q and t < q) if c > 1: return True print([h for h in range(1, 256) if isok(h)])
Comments