A364169 Smallest integer m = b*c which satisfies (b + c)*n = m - 1.
6, 21, 40, 105, 126, 301, 204, 273, 550, 1221, 936, 697, 690, 3165, 2176, 4641, 1242, 1333, 4200, 8841, 1786, 3213, 2508, 15025, 9126, 18981, 3700, 6105, 13950, 3901, 3876, 4161, 6106, 5781, 23976, 49321, 8178, 6765, 32800, 67281, 6930, 18565, 7440, 11001, 49726, 8925, 9072, 26977
Offset: 1
Examples
a(1) = 6 as 6 = 2*3, with (2 + 3)*1 = 6 - 1. a(2) = 21 as 21 = 3*7, with (3 + 7)*2 = 21 - 1. a(6) = 301 as 301 = 7*43, with (7 + 43)*6 = 301 - 1.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local t,d,b,c,m; d:= max(select(`<=`,numtheory:-divisors(n^2+1),n)); b:= d+n; c:= (n^2+1)/d + n; b*c end proc: map(f, [$1..100]); # Robert Israel, Jul 19 2023
-
Mathematica
seq[max_] := Module[{len = Floor[Sqrt[max]/2], s, r}, s = Table[max + 1, {len}]; Do[r = (b*c - 1)/(b + c); If[IntegerQ[r] && r <= len && b*c < s[[r]], s[[r]] = b*c], {b, 2, max}, {c, 2, max/b}]; TakeWhile[s, # <= max &]]; seq[70000] (* Amiram Eldar, Jul 12 2023 *)
-
PARI
a(n) = for (x=1, oo, my(d=divisors(x)); for (i=1, #d\2, b = d[i]; c = x/d[i]; if ((b+c)*n == (x-1), return(x)););); \\ Michel Marcus, Jul 12 2023
-
PARI
a(n) = {forstep(i = 1, oo, n, if(iscan(i, n), return(i)))} iscan(c, n) = {D = (1 - c)^2 - 4*n^2*c; if(!issquare(D), return(0)); b = ((c - 1) + sqrtint((1-c)^2 - 4*n^2*c)) / (2*n); if(denominator(b) == 1, return(1))} \\ David A. Corneth, Jul 12 2023
-
PARI
a(n) = {res = oo; for(b = n+1, 2*n, c = (n*b + 1)/(b - n); if(denominator(c) == 1, res = min(res, b*c))); res} \\ David A. Corneth, Jul 19 2023
-
PARI
a(n) = my(d = divisors(n^2 + 1), t = d[#d \ 2], b = t+n, c = (n^2 + 1)/t + n); return(b*c) \\ David A. Corneth, Jul 20 2023, adapted from Robert Israel, Jul 19 2023
Extensions
More terms from Michel Marcus, Jul 12 2023
Comments