A364172 a(n) = (6*n)!*(n/3)!/((3*n)!*(2*n)!*(4*n/3)!).
1, 45, 6237, 1021020, 178719453, 32427545670, 6016814703900, 1133540594837892, 215925912619400925, 41477110789150966020, 8019784929635201045862, 1558875476359831844951100, 304331361887290342345862940, 59629409730107012112361325820
Offset: 0
Links
- Peter Bala, Some integer ratios of factorials
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444.
Crossrefs
Programs
-
Maple
seq( simplify((6*n)!*(n/3)!/((3*n)!*(2*n)!*(4*n/3)!)), n = 0..15);
-
Mathematica
Table[Product[36*(6*k - 5)*(6*k - 1)/(k*(3*k + n)), {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 13 2023 *)
Formula
a(n) ~ 2^(4*n/3 - 3/2) * 3^(4*n) / sqrt(Pi*n). - Vaclav Kotesovec, Jul 13 2023
a(n) = 5832*(6*n - 1)*(6*n - 5)*(6*n - 7)*(6*n - 11)*(6*n - 13)*(6*n - 17)/(n*(n - 1)*(n - 2)*(2*n - 3)*(4*n - 3)*(4*n - 9))*a(n-3) for n >= 3 with a(0) = 1, a(1) = 45 and a(2) = 6237.
Comments