A364173 a(n) = (9*n)!*(2*n)!*(3*n/2)!/((9*n/2)!*(4*n)!*(3*n)!*n!).
1, 128, 43758, 17039360, 7012604550, 2976412336128, 1288415796384780, 565399665327996928, 250622090889055155270, 111950839825145979207680, 50312973039218473430585508, 22723567527558510746926055424, 10304958075870392958137083227804
Offset: 0
Links
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444.
Crossrefs
Programs
-
Maple
seq( simplify((9*n)!*(2*n)!*(3*n/2)!/((9*n/2)!*(4*n)!*(3*n)!*n!)) , n = 0..15);
Formula
a(n) ~ c^n * 1/sqrt(4*Pi*n), where c = (3^7)/(2^3) * sqrt(3) = 473.4993895191418....
a(n) = 108*(9*n - 1)*(9*n - 5)*(9*n - 7)*(9*n - 11)*(9*n - 13)*(9*n - 17)/(n*(n - 1)*(4*n - 1)*(4*n - 3)*(4*n - 5)*(4*n - 7))*a(n-2) for n >= 2 with a(0) = 1 and a(1) = 128.
Comments