cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364173 a(n) = (9*n)!*(2*n)!*(3*n/2)!/((9*n/2)!*(4*n)!*(3*n)!*n!).

Original entry on oeis.org

1, 128, 43758, 17039360, 7012604550, 2976412336128, 1288415796384780, 565399665327996928, 250622090889055155270, 111950839825145979207680, 50312973039218473430585508, 22723567527558510746926055424, 10304958075870392958137083227804
Offset: 0

Views

Author

Peter Bala, Jul 13 2023

Keywords

Comments

A295440, defined by A295440(n) = (18*n)!*(4*n)!*(3*n)! / ((9*n)!*(8*n)!*(6*n)!*(2*n)!), is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin (see Bober, Table 2, Entry 10). Here we are essentially considering the sequence {A295440(n/2) : n >= 0}. Fractional factorials are defined in terms of the gamma function; for example, (3*n/2)! := Gamma(1 + 3*n/2).
This sequence is only conjecturally an integer sequence.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.

Crossrefs

Programs

  • Maple
    seq( simplify((9*n)!*(2*n)!*(3*n/2)!/((9*n/2)!*(4*n)!*(3*n)!*n!)) , n = 0..15);

Formula

a(n) ~ c^n * 1/sqrt(4*Pi*n), where c = (3^7)/(2^3) * sqrt(3) = 473.4993895191418....
a(n) = 108*(9*n - 1)*(9*n - 5)*(9*n - 7)*(9*n - 11)*(9*n - 13)*(9*n - 17)/(n*(n - 1)*(4*n - 1)*(4*n - 3)*(4*n - 5)*(4*n - 7))*a(n-2) for n >= 2 with a(0) = 1 and a(1) = 128.

A364174 a(n) = (9*n)!*(5*n/2)!*(3*n/2)!/((5*n)!*(9*n/2)!*(3*n)!*(n/2)!).

Original entry on oeis.org

1, 48, 4862, 549120, 65132550, 7945986048, 987291797996, 124259864002560, 15789207515217990, 2021092963752345600, 260227401685879140612, 33665720694993527504896, 4372592850984736084611996, 569819472537519480058675200, 74468439316740019538310543000
Offset: 0

Views

Author

Peter Bala, Jul 13 2023

Keywords

Comments

A295442, defined by A295442(n) = (18*n)!*(5*n)!*(3*n)!/((10*n)!*(9*n)!*(6*n)!*n!), is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin (see Bober, Table 2, Entry 12). Here we are essentially considering the sequence {A295442(n/2) : n >= 0}. Fractional factorials are defined in terms of the gamma function; for example, (3*n/2)! := Gamma(1 + 3*n/2).
This sequence is only conjecturally an integer sequence.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.

Crossrefs

Programs

  • Maple
    seq( simplify((9*n)!*(5*n/2)!*(3*n/2)!/((5*n)!*(9*n/2)!*(3*n)!*(n/2)!)), n = 0..15)

Formula

a(n) ~ c^n * 1/sqrt(2*Pi*n), where c = 2*(3^7)/(5^3) * sqrt(15) = 135.5234332504899....
a(n) = 108*(9*n - 1)*(9*n - 5)*(9*n - 7)*(9*n - 11)*(9*n - 13)*(9*n - 17)/(5*n*(n - 1)*(5*n - 1)*(5*n - 3)*(5*n - 7)*(5*n - 9))*a(n-2) for n >= 2 with a(0) = 1 and a(1) = 48.

A364175 a(n) = (6*n)!*(2*n/3)!/((3*n)!*(2*n)!*(5*n/3)!).

Original entry on oeis.org

1, 36, 3564, 408408, 49697388, 6249195036, 802241960520, 104466877291260, 13746018177013356, 1823169705017624880, 243331037661693468564, 32641262295291161362656, 4396944340992842923469640, 594371374049863341847620936, 80586283761263090599592845140
Offset: 0

Views

Author

Peter Bala, Jul 13 2023

Keywords

Comments

A295445, defined by A295445(n) = (18*n)!*(2*n)! / ((9*n)!*(6*n)!*(5*n)!), is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin (see Bober, Table 2, Entry 15). Here we are essentially considering the sequence {A295445(n/3) : n >= 0}. Fractional factorials are defined in terms of the gamma function; for example, (2*n/3)! := Gamma(1 + 2*n/3).
This sequence is only conjecturally an integer sequence.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.

Crossrefs

Programs

  • Maple
    seq( simplify((6*n)!*(2*n/3)!/((3*n)!*(2*n)!*(5*n/3)!)), n = 0..15);

Formula

a(n) ~ c^n * 1/sqrt(5*Pi*n) where c = (1296/25)*20^(1/3) = 140.7154092442799....
a(n) = 93312*(2*n - 3)*(6*n - 1)*(6*n - 5)*(6*n - 7)*(6*n - 11)*(6*n - 13)*(6*n - 17)/(5*n*(n - 1)*(n - 2)*(5*n - 3)*(5*n - 6)*(5*n - 9)*(5*n - 12))*a(n-3) with a(0) = 1, a(1) = 36 and a(2) = 3564.
Showing 1-3 of 3 results.