cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364202 Integers m which can be written as m = p*q = r*s, with 1 <= r < p < q < s <= m and satisfying (p+q) | (s-r).

Original entry on oeis.org

6, 21, 24, 30, 40, 52, 54, 60, 72, 84, 96, 105, 120, 126, 150, 154, 160, 165, 180, 186, 189, 204, 208, 210, 216, 240, 270, 273, 288, 294, 300, 301, 312, 322, 330, 336, 342, 357, 360, 378, 384, 414, 420, 456, 468, 480, 486, 504, 525, 540, 546, 550, 594, 600
Offset: 1

Views

Author

Jose Aranda, Jul 13 2023

Keywords

Comments

Terms may have multiple solutions p,q,r,s, and each has a least quotient k = (s-r) / (p+q).
Those with k=1 are the congruent numbers (A003273) and others are a more general case.
They all share a simple inter-square characterization. The 4 squares are A = (q-p)^2, B = (p+q)^2, C = ((p+q)*k)^2 and D = (r+s)^2. We have B = A + 4m, C = B*(k^2) and D = C + 4m, where 4m is added exclusively to avoid the use of fractions.

Examples

			21 is a term since 21 = 3*7 = 1*21 which has 3+7 = 10 divides 21-1 = 20 (k=2).
So there are 4 squares, in this case, 16, 100, 400 and 484, which are related by this number. In effect, 4*21=+84 jumps from the first to the second, which, multiplied by k^2, gives the third, where +84 gives the fourth.
		

Crossrefs

Cf. A003273 (congruent numbers).

Programs

  • PARI
    isok(k) = my(d=divisors(k)); if (#d >= 4, for (i=1, #d-1, my(r = d[i], s = k/r); if (rMichel Marcus, Jul 17 2023

Extensions

More terms from Alois P. Heinz, Jul 13 2023