cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A364204 Expansion of Sum_{k>=0} x^(3*k+1) / (1 + x^(3*k+1)).

Original entry on oeis.org

1, -1, 1, 0, 1, -1, 2, -2, 1, 0, 1, 0, 2, -2, 1, -1, 1, -1, 2, -1, 2, 0, 1, -2, 2, -2, 1, 0, 1, 0, 2, -3, 1, 0, 2, 0, 2, -2, 2, -2, 1, -2, 2, -1, 1, 0, 1, -1, 3, -1, 1, 0, 1, -1, 2, -4, 2, 0, 1, -1, 2, -2, 2, -2, 2, 0, 2, -1, 1, 0, 1, -2, 2, -2, 2, 0, 2, -2, 2, -3, 1, 0, 1, 0, 2, -2, 1, -2, 1, 0, 4, -1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 92; CoefficientList[Series[Sum[x^(3 k + 1)/(1 + x^(3 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) &, MemberQ[{1}, Mod[n/#, 3]] &], {n, 1, 92}]

Formula

a(n) = Sum_{d|n, n/d==1 (mod 3)} (-1)^(d+1).

A364235 Expansion of Sum_{k>=0} x^(3*k+2) / (1 + x^(3*k+2))^2.

Original entry on oeis.org

0, 1, 0, -2, 1, 3, 0, -3, 0, 3, 1, -6, 0, 8, 3, -10, 1, 9, 0, -13, 0, 9, 1, -9, 5, 14, 0, -16, 1, 9, 0, -19, 3, 15, 8, -18, 0, 20, 0, -25, 1, 24, 0, -25, 9, 21, 1, -30, 0, 16, 3, -28, 1, 27, 16, -24, 0, 27, 1, -39, 0, 32, 0, -42, 14, 27, 0, -37, 3, 24, 1, -27, 0, 38, 15, -40, 8, 42, 0, -69
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[x^(3 k + 2)/(1 + x^(3 k + 2))^2, {k, 0, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) # &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 80}]

Formula

a(n) = Sum_{d|n, n/d==2 (mod 3)} (-1)^(d+1) * d.
Showing 1-2 of 2 results.