cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A364205 Expansion of Sum_{k>=0} x^(3*k+2) / (1 + x^(3*k+2)).

Original entry on oeis.org

0, 1, 0, -1, 1, 1, 0, 0, 0, 0, 1, -1, 0, 2, 1, -2, 1, 1, 0, -1, 0, 0, 1, 0, 1, 2, 0, -2, 1, 0, 0, -1, 1, 0, 2, -1, 0, 2, 0, -2, 1, 2, 0, -1, 1, 0, 1, -2, 0, 1, 1, -2, 1, 1, 2, 0, 0, 0, 1, -1, 0, 2, 0, -3, 2, 0, 0, -1, 1, 0, 1, 0, 0, 2, 1, -2, 2, 2, 0, -3, 0, 0, 1, -2, 2, 2, 1, -2, 1, 0, 0, -1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 92; CoefficientList[Series[Sum[x^(3 k + 2)/(1 + x^(3 k + 2)), {k, 0, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 92}]

Formula

a(n) = Sum_{d|n, n/d==2 (mod 3)} (-1)^(d+1).

A364232 Expansion of Sum_{k>=0} x^(3*k+1) / (1 + x^(3*k+1))^2.

Original entry on oeis.org

1, -2, 3, -3, 5, -6, 8, -10, 9, -9, 11, -9, 14, -16, 15, -19, 17, -18, 20, -17, 24, -21, 23, -30, 26, -28, 27, -24, 29, -27, 32, -42, 33, -33, 40, -27, 38, -40, 42, -53, 41, -48, 44, -35, 45, -45, 47, -57, 57, -47, 51, -42, 53, -54, 56, -80, 60, -57, 59, -51, 62, -64, 72, -83, 70, -63, 68, -53, 69, -72
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[x^(3 k + 1)/(1 + x^(3 k + 1))^2, {k, 0, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) # &, MemberQ[{1}, Mod[n/#, 3]] &], {n, 1, 70}]

Formula

a(n) = Sum_{d|n, n/d==1 (mod 3)} (-1)^(d+1) * d.
Showing 1-2 of 2 results.