cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364230 Triangle read by rows: T(n, k) is the number of n X n symmetric Toeplitz matrices of rank k using all the integers 1, 2, ..., n.

Original entry on oeis.org

1, 0, 2, 0, 0, 6, 0, 0, 0, 24, 0, 0, 0, 0, 120, 0, 0, 0, 0, 2, 718, 0, 0, 0, 0, 4, 31, 5005, 0, 0, 0, 0, 0, 2, 44, 40274, 0, 0, 0, 0, 0, 0, 4, 272, 362604, 0, 0, 0, 0, 0, 0, 0, 111, 774, 3627915, 0, 0, 0, 0, 0, 0, 2, 14, 244, 6974, 39909566, 0, 0, 0, 0, 0, 0, 0, 4, 64, 743, 9533, 478991256
Offset: 1

Views

Author

Stefano Spezia, Jul 14 2023

Keywords

Examples

			The triangle begins:
  1;
  0, 2;
  0, 0, 6;
  0, 0, 0, 24;
  0, 0, 0,  0, 120;
  0, 0, 0,  0,   2, 718;
  0, 0, 0,  0,   4,  31, 5005;
  ...
		

Crossrefs

Cf. A000142 (row sums), A350953 (minimal determinant), A350954 (maximal determinant), A351019 (minimal permanent), A351020 (maximal permanent), A356865 (minimal nonzero absolute value determinant), A364231 (right diagonal).

Programs

  • Mathematica
    T[n_,k_]:= Count[Table[MatrixRank[ToeplitzMatrix[Part[Permutations[Range[n]], i]]],{i,n!}],k]; Table[T[n,k],{n,8},{k,n}]//Flatten
  • PARI
    MkMat(v)={matrix(#v, #v, i, j, v[1+abs(i-j)])}
    row(n)={my(f=vector(n)); forperm(vector(n,i,i), v, f[matrank(MkMat(v))]++); f} \\ Andrew Howroyd, Dec 30 2023

Extensions

Terms a(46) and beyond from Andrew Howroyd, Dec 30 2023