cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A364406 Number of permutations of [n] such that the minimal element of each cycle is also its length.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 6, 6, 0, 0, 720, 2160, 9360, 19440, 30240, 3659040, 21772800, 228614400, 1632960000, 11125900800, 73025971200, 1708337433600, 15442053580800, 254260755302400, 3318429200486400, 46929444097536000, 546974781889536000, 7312714579602432000
Offset: 0

Views

Author

Alois P. Heinz, Jul 22 2023

Keywords

Examples

			a(0) = 1: () the empty permutation.
a(1) = 1: (1).
a(3) = 1: (1)(23).
a(6) = 6: (1)(24)(356), (1)(24)(365), (1)(25)(346), (1)(25)(364),
  (1)(26)(345), (1)(26)(354).
a(7) = 6: (1)(23)(4567), (1)(23)(4576), (1)(23)(4657), (1)(23)(4675),
  (1)(23)(4756), (1)(23)(4765).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n+1, 0, b(n-i, i-1)*binomial(n-i, i-1)*(i-1)!)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..33);
  • Mathematica
    b[n_, i_] := b[n, i] = If[i*(i + 1)/2 < n, 0, If[n == 0, 1, b[n, i - 1] + If[2*i > n + 1, 0, b[n - i, i - 1]*Binomial[n - i, i - 1]*(i - 1)!]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Dec 05 2023, after Alois P. Heinz *)

A364277 Number of permutations of [n] such that no cycle contains its length as an element.

Original entry on oeis.org

1, 0, 0, 1, 4, 24, 138, 1032, 8160, 75600, 751680, 8436960, 100679040, 1327052160, 18525024000, 280451808000, 4477627123200, 76690072166400, 1377634946688000, 26328977260185600, 525869478021888000, 11092929741653760000, 243781091314016256000, 5628622656645660672000
Offset: 0

Views

Author

Alois P. Heinz, Jul 17 2023

Keywords

Examples

			a(3) = 1: (13)(2).
a(4) = 4: (124)(3), (142)(3), (13)(2)(4), (14)(2)(3).
		

Crossrefs

A364281 Number of permutations of [n] with distinct cycle lengths such that each cycle contains exactly one cycle length as an element.

Original entry on oeis.org

1, 1, 1, 4, 10, 48, 252, 1584, 10800, 93600, 823680, 8588160, 93381120, 1158312960, 14805504000, 215028172800, 3159494553600, 51973589606400, 873152856576000, 16058241239040000, 300754643245056000, 6159522883497984000, 127439374149255168000
Offset: 0

Views

Author

Alois P. Heinz, Jul 17 2023

Keywords

Examples

			a(3) = 4: (123), (132), (13)(2), (1)(23).
a(4) = 10: (1234), (1243), (1324), (1342), (1423), (1432), (124)(3),
   (142)(3), (1)(234), (1)(243).
		

Crossrefs

Programs

  • Maple
    a:= proc(m) option remember; local b; b:=
          proc(n, i, p) option remember; `if`(i*(i+1)/2
    				
  • Mathematica
    a[m_] := a[m] = Module[{b}, b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n == 0, p!*(m - p)!, b[n, i - 1, p] + b[n - i, Min[n - i, i - 1], p - 1]]]; b[m, m, m]];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Oct 21 2023, after Alois P. Heinz *)

Formula

Conjecture: a(n) ~ exp(1) * (n-1)!. - Vaclav Kotesovec, May 23 2025

A364278 Number of partitions of [n] with distinct block sizes such that no block contains its size as an element.

Original entry on oeis.org

1, 0, 0, 1, 1, 4, 24, 47, 153, 669, 5628, 13554, 61747, 247170, 1539565, 16979571, 53166394, 268393296, 1382097160, 7831424654, 59720804940, 917256305956, 3326800474687, 20441030261195, 112690616749302, 773175024537549, 5164903931159843, 52976603588044961
Offset: 0

Views

Author

Alois P. Heinz, Jul 17 2023

Keywords

Examples

			a(0) = 1: () the empty partition.
a(3) = 1: 13|2.
a(4) = 1: 124|3.
a(5) = 4: 1235|4, 124|35, 125|34, 13|245.
		

Crossrefs

A364283 Number of permutations of [n] with distinct cycle lengths such that each cycle contains exactly one cycle length different from its own as an element.

Original entry on oeis.org

1, 0, 0, 1, 2, 12, 60, 408, 2640, 24480, 208080, 2262960, 23950080, 307359360, 3835641600, 57400358400, 825160089600, 13909727462400, 229664981145600, 4310966499840000, 79428141112320000, 1658163790483200000, 33795850208440320000, 770528520983789568000
Offset: 0

Views

Author

Alois P. Heinz, Jul 17 2023

Keywords

Examples

			a(3) = 1: (13)(2).
a(4) = 2: (124)(3), (142)(3).
a(5) = 12: (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4),
   (124)(35), (142)(35), (125)(34), (152)(34), (13)(245), (13)(254).
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; `if`(n<2, 1-n, (n-1)*(f(n-1)+f(n-2))) end:
    a:= proc(m) option remember; local b; b:=
          proc(n, i, p) option remember; `if`(i*(i+1)/2
    				
Showing 1-5 of 5 results.