cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A362362 Number of permutations of [n] such that each cycle contains its length as an element.

Original entry on oeis.org

1, 1, 1, 3, 8, 36, 174, 1104, 7440, 62640, 545040, 5649840, 60681600, 748621440, 9518342400, 136758585600, 2009451628800, 32848492723200, 549241915622400, 10066913176320000, 188293339922688000, 3832031198451456000, 79291640831090688000, 1771146970953744384000
Offset: 0

Views

Author

Alois P. Heinz, Jul 05 2023

Keywords

Comments

The cycle lengths are distinct as a consequence of the definition.

Examples

			a(3) = 3: (123), (132), (1)(23).
a(4) = 8: (1234), (1243), (1324), (1342), (1423), (1432), (1)(234), (1)(243).
		

Crossrefs

Programs

  • Maple
    a:= n-> add((n-nops(p))!, p=select(l-> nops(l)=
            nops({l[]}), combinat[partition](n))):
    seq(a(n), n=0..24);
    # second Maple program:
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$3):
    seq(a(n), n=0..24);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[i*(i + 1)/2 < n, 0, If[n == 0, p!, b[n, i - 1, p] + b[n - i, Min[n - i, i - 1], p - 1]]];
    a[n_] := b[n, n, n];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Nov 15 2023, from second Maple program *)

A364277 Number of permutations of [n] such that no cycle contains its length as an element.

Original entry on oeis.org

1, 0, 0, 1, 4, 24, 138, 1032, 8160, 75600, 751680, 8436960, 100679040, 1327052160, 18525024000, 280451808000, 4477627123200, 76690072166400, 1377634946688000, 26328977260185600, 525869478021888000, 11092929741653760000, 243781091314016256000, 5628622656645660672000
Offset: 0

Views

Author

Alois P. Heinz, Jul 17 2023

Keywords

Examples

			a(3) = 1: (13)(2).
a(4) = 4: (124)(3), (142)(3), (13)(2)(4), (14)(2)(3).
		

Crossrefs

A364279 Number of permutations of [n] with distinct cycle lengths such that no cycle contains its length as an element.

Original entry on oeis.org

1, 0, 0, 1, 2, 12, 86, 546, 4284, 39588, 416988, 4378848, 54297504, 695592000, 9840307680, 149031686880, 2387863575360, 40338090711360, 736126007279040, 13938942123429120, 279358800902737920, 5894877845100625920, 129943826126987765760, 2985640822908446976000
Offset: 0

Views

Author

Alois P. Heinz, Jul 17 2023

Keywords

Examples

			a(3) = 1: (13)(2).
a(4) = 2: (124)(3), (142)(3).
a(5) = 12: (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4), (124)(35), (142)(35), (125)(34), (152)(34), (13)(245), (13)(254).
		

Crossrefs

A364281 Number of permutations of [n] with distinct cycle lengths such that each cycle contains exactly one cycle length as an element.

Original entry on oeis.org

1, 1, 1, 4, 10, 48, 252, 1584, 10800, 93600, 823680, 8588160, 93381120, 1158312960, 14805504000, 215028172800, 3159494553600, 51973589606400, 873152856576000, 16058241239040000, 300754643245056000, 6159522883497984000, 127439374149255168000
Offset: 0

Views

Author

Alois P. Heinz, Jul 17 2023

Keywords

Examples

			a(3) = 4: (123), (132), (13)(2), (1)(23).
a(4) = 10: (1234), (1243), (1324), (1342), (1423), (1432), (124)(3),
   (142)(3), (1)(234), (1)(243).
		

Crossrefs

Programs

  • Maple
    a:= proc(m) option remember; local b; b:=
          proc(n, i, p) option remember; `if`(i*(i+1)/2
    				
  • Mathematica
    a[m_] := a[m] = Module[{b}, b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n == 0, p!*(m - p)!, b[n, i - 1, p] + b[n - i, Min[n - i, i - 1], p - 1]]]; b[m, m, m]];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Oct 21 2023, after Alois P. Heinz *)

Formula

Conjecture: a(n) ~ exp(1) * (n-1)!. - Vaclav Kotesovec, May 23 2025

A364207 Number of partitions of [n] such that the minimal element of each block is also its size.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 3, 1, 0, 0, 60, 45, 53, 24, 7, 12601, 15120, 33390, 55710, 66522, 86037, 37907754, 63130067, 202203684, 511378789, 1421634137, 2566309603, 5855352202, 2064277450957, 4418631559288, 18485494082571, 61020702809287, 232959438927000, 783244248553960
Offset: 0

Views

Author

Alois P. Heinz, Jul 13 2023

Keywords

Comments

The block sizes are distinct as a consequence of the definition.
There are A188431(n) different block size configurations for a given n. - John Tyler Rascoe, Jul 19 2023

Examples

			a(0) = 1: () the empty partition.
a(1) = 1: 1.
a(3) = 1: 1|23.
a(6) = 3: 1|24|356, 1|25|346, 1|26|345.
a(7) = 1: 1|23|4567.
a(10) = 60: 1|25|367|489(10), 1|25|368|479(10), 1|25|369|478(10), ..., 1|28|39(10)|4567, 1|29|38(10)|4567, 1|2(10)|389|4567.
a(14) = 7: 1|23|4568|79(10)(11)(12)(13)(14), 1|23|4569|78(10)(11)(12)(13)(14), 1|23|456(10)|789(11)(12)(13)(14), 1|23|456(11)|789(10)(12)(13)(14), 1|23|456(12)|789(10)(11)(13)(14), 1|23|456(13)|789(10)(11)(12)(14), 1|23|456(14)|789(10)(11)(12)(13).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n or i>n-i+1, 0, b(n-i, i-1)*binomial(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..33);  # Alois P. Heinz, Jul 22 2023
  • Mathematica
    b[n_, i_] := b[n, i] = If[i(i+1)/2 < n, 0, If[n == 0, 1, b[n, i-1] + If[i > n || i > n-i+1, 0, b[n-i, i-1]*Binomial[n-i, i-1]]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Oct 20 2023, after Alois P. Heinz *)

A364283 Number of permutations of [n] with distinct cycle lengths such that each cycle contains exactly one cycle length different from its own as an element.

Original entry on oeis.org

1, 0, 0, 1, 2, 12, 60, 408, 2640, 24480, 208080, 2262960, 23950080, 307359360, 3835641600, 57400358400, 825160089600, 13909727462400, 229664981145600, 4310966499840000, 79428141112320000, 1658163790483200000, 33795850208440320000, 770528520983789568000
Offset: 0

Views

Author

Alois P. Heinz, Jul 17 2023

Keywords

Examples

			a(3) = 1: (13)(2).
a(4) = 2: (124)(3), (142)(3).
a(5) = 12: (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4),
   (124)(35), (142)(35), (125)(34), (152)(34), (13)(245), (13)(254).
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; `if`(n<2, 1-n, (n-1)*(f(n-1)+f(n-2))) end:
    a:= proc(m) option remember; local b; b:=
          proc(n, i, p) option remember; `if`(i*(i+1)/2
    				
Showing 1-6 of 6 results.