cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A326493 Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all partitions of n into distinct parts (k is a partition length).

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 9, 21, 38, 146, 322, 902, 3106, 8406, 35865, 123321, 393691, 1442688, 7310744, 23471306, 129918661, 500183094, 2400722981, 9592382321, 47764284769, 280267554944, 1247781159201, 7620923955225, 36278364107926, 189688942325418, 1124492015730891
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2019

Keywords

Comments

Number of partitions of [n] such that each block contains its size as an element. So the block sizes have to be distinct. a(6) = 9: 123456, 12|3456, 1345|26, 1346|25, 1456|23, 1|23456, 1|24|356, 1|25|346, 1|26|345.

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> add(multinomial(n-nops(p), map(x-> x-1, p)[], 0),
            p=select(l-> nops(l)=nops({l[]}), partition(n))):
    seq(a(n), n=0..30);
    # second Maple program:
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$3):
    seq(a(n), n=0..31);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n==0, p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p-1]/(i-1)!]];
    a[n_] := b[n, n, n];
    a /@ Range[0, 31] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)

A364406 Number of permutations of [n] such that the minimal element of each cycle is also its length.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 6, 6, 0, 0, 720, 2160, 9360, 19440, 30240, 3659040, 21772800, 228614400, 1632960000, 11125900800, 73025971200, 1708337433600, 15442053580800, 254260755302400, 3318429200486400, 46929444097536000, 546974781889536000, 7312714579602432000
Offset: 0

Views

Author

Alois P. Heinz, Jul 22 2023

Keywords

Examples

			a(0) = 1: () the empty permutation.
a(1) = 1: (1).
a(3) = 1: (1)(23).
a(6) = 6: (1)(24)(356), (1)(24)(365), (1)(25)(346), (1)(25)(364),
  (1)(26)(345), (1)(26)(354).
a(7) = 6: (1)(23)(4567), (1)(23)(4576), (1)(23)(4657), (1)(23)(4675),
  (1)(23)(4756), (1)(23)(4765).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n+1, 0, b(n-i, i-1)*binomial(n-i, i-1)*(i-1)!)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..33);
  • Mathematica
    b[n_, i_] := b[n, i] = If[i*(i + 1)/2 < n, 0, If[n == 0, 1, b[n, i - 1] + If[2*i > n + 1, 0, b[n - i, i - 1]*Binomial[n - i, i - 1]*(i - 1)!]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Dec 05 2023, after Alois P. Heinz *)

A179973 Number of permutations of [n] whose cycle lengths are nondecreasing when cycles are ordered by their minima and these minima are {1..k} (for some k <= n).

Original entry on oeis.org

1, 1, 2, 4, 12, 42, 216, 1200, 8664, 66384, 612264, 5910024, 66723384, 776642664, 10311400344, 141065450904, 2153769250584, 33743736435864, 583781959921944, 10308436641381144, 198863818304824344, 3914117125411211544, 83301822014343774744, 1805447764831655109144
Offset: 0

Views

Author

Alford Arnold, Aug 05 2010

Keywords

Comments

The original name was: Row sums of A179972 and also of A179974.

Examples

			a(4) = 12 = 6 + 2 + 2 + 1 + 1: (1234), (1243), (1324), (1342), (1423), (1432),
  (13)(24), (14)(23), (1)(234), (1)(243), (1)(2)(34), (1)(2)(3)(4).
		

Crossrefs

Programs

  • Maple
    a:= n-> add((n-nops(p))!, p=combinat[partition](n)):
    seq(a(n), n=0..24);  # Alois P. Heinz, Jul 09 2023
    # second Maple program:
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
         (p-n)!, b(n, i-1, p)+b(n-i, min(n-i, i), p-1))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..24);  # Alois P. Heinz, Jul 09 2023
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, (p - n)!, b[n, i - 1, p] + b[n - i, Min[n - i, i], p - 1]];
    a[n_] := b[n, n, n];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 16 2023, after Alois P. Heinz *)

Formula

From Alois P. Heinz, Jul 09 2023: (Start)
a(n) = Sum_{lambda in partitions(n)} (n - |lambda|)!.
Limit_{n->oo} A004086(a(n))/10^A055642(a(n)) = A364128. (End)

Extensions

Edited by R. J. Mathar, May 17 2016
a(0), a(9)-a(23) and new name from Alois P. Heinz, Jul 09 2023

A364277 Number of permutations of [n] such that no cycle contains its length as an element.

Original entry on oeis.org

1, 0, 0, 1, 4, 24, 138, 1032, 8160, 75600, 751680, 8436960, 100679040, 1327052160, 18525024000, 280451808000, 4477627123200, 76690072166400, 1377634946688000, 26328977260185600, 525869478021888000, 11092929741653760000, 243781091314016256000, 5628622656645660672000
Offset: 0

Views

Author

Alois P. Heinz, Jul 17 2023

Keywords

Examples

			a(3) = 1: (13)(2).
a(4) = 4: (124)(3), (142)(3), (13)(2)(4), (14)(2)(3).
		

Crossrefs

A364279 Number of permutations of [n] with distinct cycle lengths such that no cycle contains its length as an element.

Original entry on oeis.org

1, 0, 0, 1, 2, 12, 86, 546, 4284, 39588, 416988, 4378848, 54297504, 695592000, 9840307680, 149031686880, 2387863575360, 40338090711360, 736126007279040, 13938942123429120, 279358800902737920, 5894877845100625920, 129943826126987765760, 2985640822908446976000
Offset: 0

Views

Author

Alois P. Heinz, Jul 17 2023

Keywords

Examples

			a(3) = 1: (13)(2).
a(4) = 2: (124)(3), (142)(3).
a(5) = 12: (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4), (124)(35), (142)(35), (125)(34), (152)(34), (13)(245), (13)(254).
		

Crossrefs

A364283 Number of permutations of [n] with distinct cycle lengths such that each cycle contains exactly one cycle length different from its own as an element.

Original entry on oeis.org

1, 0, 0, 1, 2, 12, 60, 408, 2640, 24480, 208080, 2262960, 23950080, 307359360, 3835641600, 57400358400, 825160089600, 13909727462400, 229664981145600, 4310966499840000, 79428141112320000, 1658163790483200000, 33795850208440320000, 770528520983789568000
Offset: 0

Views

Author

Alois P. Heinz, Jul 17 2023

Keywords

Examples

			a(3) = 1: (13)(2).
a(4) = 2: (124)(3), (142)(3).
a(5) = 12: (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4),
   (124)(35), (142)(35), (125)(34), (152)(34), (13)(245), (13)(254).
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; `if`(n<2, 1-n, (n-1)*(f(n-1)+f(n-2))) end:
    a:= proc(m) option remember; local b; b:=
          proc(n, i, p) option remember; `if`(i*(i+1)/2
    				
Showing 1-6 of 6 results.