A364298 Square array read by ascending antidiagonals: T(n,k) = [x^k] 1/(1 + x) * Legendre_P(k, (1 - x)/(1 + x))^(-n) for n >= 1, k >= 0.
1, 1, 1, 1, 3, 19, 1, 5, 73, 721, 1, 7, 163, 3747, 49251, 1, 9, 289, 10805, 329001, 5370751, 1, 11, 451, 23623, 1179251, 44127003, 859748023, 1, 13, 649, 43929, 3100001, 190464755, 8405999785, 190320431953, 1, 15, 883, 73451, 6751251, 589050007, 42601840975, 2160445363107
Offset: 1
Examples
Square array begins n\k| 0 1 2 3 4 5 6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 | 1 1 19 721 49251 5370751 859748023 2 | 1 3 73 3747 329001 44127003 8405999785 3 | 1 5 163 10805 1179251 190464755 42601840975 4 | 1 7 289 23623 3100001 589050007 152184210193 5 | 1 9 451 43929 6751251 1479318759 434790348679 6 | 1 11 649 73451 12953001 3219777011 1062573281785
Crossrefs
Programs
-
Maple
T(n,k) := coeff(series(1/(1+x)* LegendreP(k,(1-x)/(1+x))^(-n), x, 11), x, k): # display as a square array seq(print(seq(T(n, k), k = 0..10)), n = 1..10); # display as a sequence seq(seq(T(n-k, k), k = 0..n-1), n = 1..10);
Comments