cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364298 Square array read by ascending antidiagonals: T(n,k) = [x^k] 1/(1 + x) * Legendre_P(k, (1 - x)/(1 + x))^(-n) for n >= 1, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 3, 19, 1, 5, 73, 721, 1, 7, 163, 3747, 49251, 1, 9, 289, 10805, 329001, 5370751, 1, 11, 451, 23623, 1179251, 44127003, 859748023, 1, 13, 649, 43929, 3100001, 190464755, 8405999785, 190320431953, 1, 15, 883, 73451, 6751251, 589050007, 42601840975, 2160445363107
Offset: 1

Views

Author

Peter Bala, Jul 18 2023

Keywords

Comments

In the square array A364113, the k-th entry in row n is defined as [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x))^n. Here we essentially extend A364113 to negative values of n.
The two types of Apéry numbers A005258 and A005259 are related to the Legendre polynomials by A005258(k) = [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x)) and A005259(k) = [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x))^2 and thus form rows 1 and 2 of the array A364113
Both types of Apéry numbers satisfy the supercongruences
1) u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r))
and the shifted supercongruences
2) u(n*p^r - 1) == u(n*p^(r-1) - 1) (mod p^(3*r))
for all primes p >= 5 and positive integers n and r.
We conjecture that each row sequence of the present table satisfies the same pair of supercongruences.

Examples

			 Square array begins
 n\k|  0    1     2       3          4            5               6
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  1 |  1    1    19     721      49251      5370751       859748023
  2 |  1    3    73    3747     329001     44127003      8405999785
  3 |  1    5   163   10805    1179251    190464755     42601840975
  4 |  1    7   289   23623    3100001    589050007    152184210193
  5 |  1    9   451   43929    6751251   1479318759    434790348679
  6 |  1   11   649   73451   12953001   3219777011   1062573281785
		

Crossrefs

A364299 (row 1), A364300 (row 2), A364301 (main diagonal), A364302 (first subdiagonal). Cf. A005258, A005259, A143007, A364113.

Programs

  • Maple
    T(n,k) := coeff(series(1/(1+x)* LegendreP(k,(1-x)/(1+x))^(-n), x, 11), x, k):
    # display as a square array
    seq(print(seq(T(n, k), k = 0..10)), n = 1..10);
    # display as a sequence
    seq(seq(T(n-k, k), k = 0..n-1), n = 1..10);