cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364323 Number of partitions of 2n into n parts where each block of part i with multiplicity j is marked with a word of length i*j over a (2n)-ary alphabet whose letters appear in alphabetical order and all 2n letters occur exactly once in the partition.

Original entry on oeis.org

1, 1, 5, 76, 785, 12181, 377708, 8009002, 171155505, 4073421919, 168532394115, 6213455777530, 198071252771780, 6383569557705276, 204582355050315856, 8766238064421938746, 446196770370016437201, 20584924968627941009331, 920598569147050035793061
Offset: 0

Views

Author

Alois P. Heinz, Jul 18 2023

Keywords

Examples

			a(2) = 5: 3abc1d, 3abd1c, 3acd1b, 3bcd1a, 22abcd.
		

Crossrefs

Cf. A364310.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*x^j*binomial(n, i*j), j=0..n/i))))
        end:
    a:= n-> coeff(b(2*n$2), x, n):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0,
       Sum[b[n - i*j, i - 1]*x^j*Binomial[n, i*j], {j, 0, n/i}]]]];
    a[n_] := Coefficient[b[2n, 2n], x, n];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 29 2023, from Maple code *)

Formula

a(n) = A364310(2n,n).