A364331 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^5).
1, 2, 15, 163, 2070, 28698, 421015, 6425644, 100977137, 1622885389, 26551709946, 440744175801, 7404449354076, 125657625548824, 2150963575012295, 37094953102567208, 643904274979347286, 11241232087809137759, 197247501440314516840, 3476787208220672891388, 61533794803235280779261
Offset: 0
Crossrefs
Programs
-
Maple
A364331 := proc(n) add( binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k)/(2*n+3*k+1),k=0..n) ; end proc: seq(A364331(n),n=0..70); # R. J. Mathar, Jul 25 2023
-
PARI
a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+3*k+1, n-k)/(2*n+3*k+1));
Formula
a(n) = Sum_{k=0..n} binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k) / (2*n+3*k+1).
x/series_reversion(x*A(x)) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + ..., the g.f. of A215623. - Peter Bala, Sep 08 2024