A364406 Number of permutations of [n] such that the minimal element of each cycle is also its length.
1, 1, 0, 1, 0, 0, 6, 6, 0, 0, 720, 2160, 9360, 19440, 30240, 3659040, 21772800, 228614400, 1632960000, 11125900800, 73025971200, 1708337433600, 15442053580800, 254260755302400, 3318429200486400, 46929444097536000, 546974781889536000, 7312714579602432000
Offset: 0
Keywords
Examples
a(0) = 1: () the empty permutation. a(1) = 1: (1). a(3) = 1: (1)(23). a(6) = 6: (1)(24)(356), (1)(24)(365), (1)(25)(346), (1)(25)(364), (1)(26)(345), (1)(26)(354). a(7) = 6: (1)(23)(4567), (1)(23)(4576), (1)(23)(4657), (1)(23)(4675), (1)(23)(4756), (1)(23)(4765).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..474
- Wikipedia, Permutation
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i*(i+1)/2
n+1, 0, b(n-i, i-1)*binomial(n-i, i-1)*(i-1)!))) end: a:= n-> b(n$2): seq(a(n), n=0..33); -
Mathematica
b[n_, i_] := b[n, i] = If[i*(i + 1)/2 < n, 0, If[n == 0, 1, b[n, i - 1] + If[2*i > n + 1, 0, b[n - i, i - 1]*Binomial[n - i, i - 1]*(i - 1)!]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Dec 05 2023, after Alois P. Heinz *)