cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364421 For n >= 3, r >= 0, y an integer, a(n) is the number of integral solutions to the elliptic equation y^2 = n^3 + n^2 + 2*r*n + r^2.

Original entry on oeis.org

2, 2, 2, 3, 2, 4, 3, 4, 2, 8, 2, 4, 8, 5, 2, 7, 2, 9, 8, 4, 2, 15, 3, 4, 5, 10, 2, 15, 2, 7, 8, 4, 8, 17, 2, 4, 8, 15, 2, 15, 2, 10, 14, 4, 2, 22, 3, 7, 8, 9, 2, 10, 8, 15, 8, 4, 2, 38, 2, 4, 14, 8, 8, 15, 2, 9, 7, 16, 2, 27, 2, 4, 13, 9, 8, 15, 2, 22, 6, 4, 2, 39, 8, 4, 7, 16, 2, 27, 8, 10
Offset: 3

Views

Author

Ctibor O. Zizka, Sep 01 2023

Keywords

Comments

The equation y^2 = n^3 + A*n^2 + B*n + C, where A = 1, B = 2*r, C = r^2 is a minimal model of an elliptic curve with integral coefficients, for details see the Links section.
For a prime number p >= 5, the equation y^2 = p^3 + (p + r)^2 has 2 solutions, r_1 = p*(p - 3)/2 and r_2 = (p + 1)*(p^2 - p - 1)/2.
Factoring the equation y^2 = n^3 + n^2 + 2*r*n + r^2 yields (y+n+r)*(y-n-r) = n^3, which implies y+n+r = d and y-n-r = n^3/d for some divisor d of n^3. Thus a(n) is the number of divisors d of n^3 such that (d-n^3/d)/2 - n is a nonnegative integer. This resolves some of Thomas Scheuerle's conjectures. - Robin Visser, Sep 30 2023

Examples

			n = 6: y^2 = 6^3 + (6 + r)^2 is valid for r = 9, 19, 47, thus a(6) = 3. The 3 solutions [y, n, n+r] are [21, 6, 15], [29, 6, 25], [55, 6, 53].
		

Crossrefs

Programs

  • PARI
    a(n) = length(select((x) -> x[1] >= 0 && x[2] >= n, thue(thueinit(x^2-1,1),n^3),1)) \\ Thomas Scheuerle, Sep 03 2023
    
  • Sage
    def a(n):
        num_sols = 0
        for d in Integer(n^3).divisors():
            if ((d-n^3/d)%2 == 0) and ((d-n^3/d)/2 >= n): num_sols += 1
        return num_sols  # Robin Visser, Sep 30 2023

Formula

a(p) = 2 for p prime >= 5, see Comments.
From Thomas Scheuerle, Sep 04 2023: (Start)
Conjecture: a(A190300(n)) = 3.
Conjecture: a(A196226(n)) = 4.
Conjecture: a(p^3) = 5 if p is an odd prime.
Conjecture: a(2*p^2) = 7 if p is an odd prime. But there exist other cases too, for example a(3*23) = 7.
Conjecture: a(prime(n)^prime(n)) = A245685(n - 1) - 1. (End)

Extensions

a(61)-a(92) from Thomas Scheuerle, Sep 01 2023