A364446 Odd bisection of A097514.
1, 2, 17, 205, 3876, 99585, 3313117, 138046940, 6974868139, 419104459913, 29405917751526, 2376498296500063, 218615700758838253, 22667167720595002186, 2626657814273218158997, 337692419653329329932633, 47859496337287704749354668
Offset: 0
Keywords
Crossrefs
Cf. A097514.
Programs
-
Maple
# Maple program 1: Digits:=48; a:= proc(n) round(evalf(sum(p^(2*n + 1)*hypergeom([-n, -n - 1/2], [ ], -2/p^2)/p!, p = 1 .. infinity)/exp(1))); end: seq(a(n),n=0..16); # Alternative formula in terms of generalized Laguerre # polynomials LaguerreL(n,b,z): # Maple program 2: Digits:=48; a:= proc(n) round(evalf(sum(factor(expand(p^(2*n+1)*n!* (-2/p^2)^n*LaguerreL(n,1/2,p^2/2)))/p!,p=1..infinity)/exp(1))); end: seq(a(n),n=0..16); # third Maple program: b:= proc(n) option remember; `if`(n=0, 1, add(`if`( j=2, 0, b(n-j)*binomial(n-1, j-1)), j=1..n)) end: a:= n-> b(2*n+1): seq(a(n), n=0..25); # Alois P. Heinz, Jul 25 2023
-
Mathematica
b[n_] := b[n] = If[n == 0, 1, Sum[If[j == 2, 0, b[n-j]*Binomial[n-1, j-1]], {j, 1, n}]]; a[n_] := b[2n+1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 03 2024, after Alois P. Heinz *)
-
PARI
my(N=44,x='x+O('x^N)); v=Vec(serlaplace(exp(exp(x)-1-x^2/2))); vector(#v\2,n,v[2*n]) \\ Joerg Arndt, Jul 26 2023
Formula
a(n) = Sum_{p >= 1} (p^(2*n + 1)*hypergeom([-n, -n - 1/2], [ ], -2/p^2)/p!) / exp(1).
a(n) = (2*n+1)! * [x^(2*n+1)] exp(exp(x)-1-x^2/2). - Alois P. Heinz, Jul 25 2023
Comments