cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364446 Odd bisection of A097514.

Original entry on oeis.org

1, 2, 17, 205, 3876, 99585, 3313117, 138046940, 6974868139, 419104459913, 29405917751526, 2376498296500063, 218615700758838253, 22667167720595002186, 2626657814273218158997, 337692419653329329932633, 47859496337287704749354668
Offset: 0

Views

Author

Karol A. Penson, Jul 25 2023

Keywords

Comments

Closed-form expression in terms of known functions.
a(n) is the number of partitions of a (2n+1)-set without blocks of size 2. - Alois P. Heinz, Jul 25 2023

Crossrefs

Cf. A097514.

Programs

  • Maple
    # Maple program 1:
    Digits:=48;
    a:= proc(n) round(evalf(sum(p^(2*n + 1)*hypergeom([-n, -n - 1/2],
           [ ], -2/p^2)/p!, p = 1 .. infinity)/exp(1)));
        end:
    seq(a(n),n=0..16);
    # Alternative formula in terms of generalized Laguerre
    # polynomials LaguerreL(n,b,z):
    # Maple program 2:
    Digits:=48;
    a:= proc(n) round(evalf(sum(factor(expand(p^(2*n+1)*n!*
          (-2/p^2)^n*LaguerreL(n,1/2,p^2/2)))/p!,p=1..infinity)/exp(1)));
        end:
    seq(a(n),n=0..16);
    # third Maple program:
    b:= proc(n) option remember; `if`(n=0, 1, add(`if`(
           j=2, 0, b(n-j)*binomial(n-1, j-1)), j=1..n))
        end:
    a:= n-> b(2*n+1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 25 2023
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1,
       Sum[If[j == 2, 0, b[n-j]*Binomial[n-1, j-1]], {j, 1, n}]];
    a[n_] := b[2n+1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 03 2024, after Alois P. Heinz *)
  • PARI
    my(N=44,x='x+O('x^N)); v=Vec(serlaplace(exp(exp(x)-1-x^2/2))); vector(#v\2,n,v[2*n]) \\ Joerg Arndt, Jul 26 2023

Formula

a(n) = Sum_{p >= 1} (p^(2*n + 1)*hypergeom([-n, -n - 1/2], [ ], -2/p^2)/p!) / exp(1).
a(n) = (2*n+1)! * [x^(2*n+1)] exp(exp(x)-1-x^2/2). - Alois P. Heinz, Jul 25 2023