A364467 Number of integer partitions of n where some part is the difference of two consecutive parts.
0, 0, 0, 1, 1, 2, 4, 5, 9, 13, 21, 28, 42, 55, 78, 106, 144, 187, 255, 325, 429, 554, 717, 906, 1165, 1460, 1853, 2308, 2899, 3582, 4468, 5489, 6779, 8291, 10173, 12363, 15079, 18247, 22124, 26645, 32147, 38555, 46285, 55310, 66093, 78684, 93674, 111104
Offset: 0
Keywords
Examples
The a(3) = 1 through a(9) = 13 partitions: (21) (211) (221) (42) (421) (422) (63) (2111) (321) (2221) (431) (621) (2211) (3211) (521) (3321) (21111) (22111) (3221) (4221) (211111) (4211) (4311) (22211) (5211) (32111) (22221) (221111) (32211) (2111111) (42111) (222111) (321111) (2211111) (21111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]!={}&]],{n,0,30}]
-
Python
from collections import Counter from sympy.utilities.iterables import partitions def A364467(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if not set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023
Comments