A364506 Square array read by ascending antidiagonals: T(n,k) = (2*k)!/k! * ( (2*n*k)! * ((2*n+1)*k)! )/( (n*k)!^2 * ((n+1)*k)!^2 ).
1, 1, 2, 1, 6, 6, 1, 40, 90, 20, 1, 350, 5880, 1680, 70, 1, 3528, 594594, 1101100, 34650, 252, 1, 38808, 75088728, 1299170600, 229265400, 756756, 924, 1, 453024, 10861066216, 2066315135040, 3164045050530, 50678855040, 17153136, 3432, 1, 5521230, 1721929279200, 3943172216808000
Offset: 0
Examples
Square array begins: n\k| 0 1 2 3 4 5 - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 | 1 2 6 20 70 252 ... 1 | 1 6 90 1680 34650 756756 ... 2 | 1 40 5880 1101100 229265400 50678855040 ... 3 | 1 350 594594 1299170600 3164045050530 8188909171581600 ... 4 | 1 3528 75088728 2066315135040 63464046079757400 ... 5 | 1 38808 ...
Links
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444.
- K. Soundararajan, Integral factorial ratios: irreducible examples with height larger than 1, Phil. Trans. Royal Soc., A378: 2018044, 2019.
- Wikipedia, Dixon's identity
Crossrefs
Programs
-
Maple
# display as a square array T(n,k) := (2*k)!/k! * ( (2*n*k)! * ((2*n+1)*k)! )/((n*k)!^2 * ((n+1)*k)!^2): seq( print(seq(T(n,k), k = 0..10)), n = 0..10); # display as a sequence seq( seq(T(n-k,k), k = 0..n), n = 0..10);
Formula
T(n,k) = Sum_{i = -k..k} (-1)^i * binomial(2*k, k+i) * binomial(2*n*k, n*k+i)^2 (shows that the table entries are integers).
For n >= 1, T(n,k) = (-1)^k * binomial(2*n*k, (n+1)*k)^2 * hypergeom([-2*k, -(n+1)*k, -(n+1)*k], [1 + (n-1)*k, 1 + (n-1)*k], 1) = (2*k)!/k! * ( (2*n*k)! * ((2*n+1)*k)! )/( (n*k)!^2 * ((n+1)*k)!^2 ) by Dixon's 3F2 summation theorem.
T(n,k) = (-1)^k * [x^((n + 1)*k)] ( (1 - x)^(2*(n+1)*k) * Legendre_P(2*n*k, (1 + x)/(1 - x)) ). - Peter Bala, Aug 15 2023
Comments