cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A364509 Square array read by ascending antidiagonals: T(n,k) = (2*k)!/k!^2 * ( (2*n*k)! * ((n + 2)*k)! )/( (n*k)! * ((n + 1)*k)!^2 ) for n, k > = 0.

Original entry on oeis.org

1, 1, 4, 1, 6, 36, 1, 16, 90, 400, 1, 50, 784, 1680, 4900, 1, 168, 8910, 48400, 34650, 63504, 1, 588, 113256, 2011100, 3312400, 756756, 853776, 1, 2112, 1528436, 96993024, 503909070, 240374016, 17153136, 11778624, 1, 7722, 21395520, 5056527000, 92279796840, 133954543800, 18116083216
Offset: 0

Views

Author

Peter Bala, Jul 28 2023

Keywords

Comments

Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_k(c, d) = (c_1*k)!*(c_2*k)!* ... *(c_K*k)!/ ( (d_1*k)!*(d_2*k)!* ... *(d_L*k)! ) and ask whether it is integral for all k >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
Each row sequence of the present table is an integral factorial ratio sequence of height 2.
It is known that both row 0, the squares of the central binomial numbers, and row 1, the de Bruijn numbers, satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that all the row sequences of the table satisfy the same supercongruences [added Oct 11 2024: follows from Meštrović, Section 6, equation 39, since T(n, k) = binomial(2*k, k) * binomial(2*n*k, n*k) * binomial((n+2)*k, k)/binomial((n+1)*k, k)].

Examples

			 Square array begins:
 n\k|  0    1        2           3               4                  5
  - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |  1    4       36         400            4900              63504 ... A002894
  1 |  1    6       90        1680           34650             756756 ... A006480
  2 |  1   16      784       48400         3312400          240374016 ... A364510
  3 |  1   50     8910     2011100       503909070       133954543800 ... A364511
  4 |  1  168   113256    96993024     92279796840     93172920645168 ...
  5 |  1  588  1528436  5056527000  18592935952500  72567511917065088 ...
		

Crossrefs

A002894 (row 0), A006480 (row 1), A364510 (row 3), A364511 (row 4).

Programs

  • Maple
     # display as a square array
    T(n,k) := (2*k)!/k!^2 * ( (2*n*k)! * ((n + 2)*k)! )/( (n*k)! * ((n + 1)*k)!^2 ):
    seq( print(seq(T(n,k), k = 0..10)), n = 0..10):
    # display as a sequence
    seq( seq(T(n-k,k), k = 0..n), n = 0..10);
  • PARI
    T(n,k) = (2*k)!/k!^2 * ( (2*n*k)! * ((n + 2)*k)! )/( (n*k)! * ((n + 1)*k)!^2 ) \\ Winston de Greef, Oct 05 2023

Formula

T(n,k) = Sum_{i = -k..k} (-1)^i * binomial(2*k, k+i)^2 * binomial(2*n*k, n*k+i) (shows that the table entries are integers).
For n >= 1, T(n,k) = (-1)^k * binomial(2*n*k, (n+1)*k)^2 * hypergeom([-2*k, -2*k, -(n+1)*k], [1, 1 + (n-1)*k], 1) = (2*k)!/k!^2 * ( (2*n*k)! * ((n + 2)*k)! )/( (n*k)! * ((n + 1)*k)!^2 ) by Dixon's 3F2 summation theorem.
T(n,k) = (-1)^(n*k) * [x^((n+1)*k)] ( (1 - x)^(2*(n+1)*k) * Legendre_P(2*k, (1 + x)/(1 - x)) ). - Peter Bala, Aug 14 2023

A364513 Square array read by ascending antidiagonals: T(n,k) = [x^k] (1 - x)^(2*k) * Legendre_P(n*k-1, (1 + x)/(1 - x)) for n, k >= 0.

Original entry on oeis.org

1, 1, -2, 1, -2, 6, 1, 0, 0, -20, 1, 4, 0, 16, 70, 1, 10, 126, 0, 0, -252, 1, 18, 594, 4900, 0, -252, 924, 1, 28, 1716, 44200, 209950, 0, 0, -3432, 1, 40, 3900, 205920, 3640210, 9513504, 0, 4800, 12870, 1, 54, 7650, 685216, 27386100, 317678760, 447103440, 0, 0, -48620, 1, 70, 13566, 1847560, 133501500, 3861534768, 28782923400, 21558808128, 0, -100100, 184756
Offset: 0

Views

Author

Peter Bala, Jul 31 2023

Keywords

Comments

Compare with A364303.
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L), where c_1 + ... + c_K = d_1 + ... + d_L, we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1 (see A295431). Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
Each row of the present table is an integral factorial ratio sequence of height 2. It is usually assumed that the c's and d's are integers but here some of the c's and d's are half-integers. See A276098 and the cross references there for further examples of this type.

Examples

			 Square array begins:
 n\k|  0    1       2         3            4              5
  - + - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |  1   -2       6       -20           70           -252   ... (see A000984)
  1 |  1   -2       0        16            0           -252   ...  A364514
  2 |  1    0       0         0            0              0
  3 |  1    4     126      4900       209950        9513504   ...  (1/3)*A352651
  4 |  1   10     594     44200      3640210      317678760   ...  A364515
  5 |  1   18    1716    205920     27386100     3861534768   ...  (3/5)*A352652
  6 |  1   28    3900    685216    133501500    27583083528   ...  A364516
  7 |  1   40    7650   1847560    494944450   140625140040   ...  A364517
		

Crossrefs

Cf. A000984 (row 0 unsigned), A276098, A295431, A352651 (3*row 3), A352652 ((5/3)*row 5), A364303, A364506, A364509, A364514 (row 1), A364515 (row 4), A364516 (row 6), A364517 (row 7).

Programs

  • Maple
    T(n,k) := coeff(series( (1 - x)^(2*k) * LegendreP(n*k-1, (1 + x)/(1 - x)), x, 11), x, k):
    # display as a square array
    seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
    # display as a sequence
    seq(seq(T(n-k, k), k = 0..n), n = 0..10);

Formula

T(n,k) = Sum_{i = 0..k} binomial(n*k-1, k-i)^2 * binomial((n-2)*k+i-2, i).
T(n,1) = 1 for all n and for n >= 2 and k >= 1, T(n,k) = binomial((k*n-1), k)^2 * hypergeom([a, b, b], [1 + a - b, 1 + a - b], 1), where a = (n - 2)*k - 1 and b = -k.
For n >= 3 and k >= 1, T(n,k) = ((n*k - 1))! * ( ((n+2)*k - 1)/2 )! * ( ((n-2)*k - 1)/2 )! / ( k!^2 * ((n-2)*k - 1)! * ((n*k - 1)/2)!^2 ) by Dixon's 3F2 summation theorem, where fractional factorials are defined in terms of the gamma function.
For n >= 3 and k >= 1, T(n,k) = (n-2)/n * ((n+2)*k)!*(n*k/2)!^2 / ( ((n+2)*k/2)! * (n*k)! * ((n-2)*k/2)! * k!^2 ).
The central binomial numbers A000984, row 1 unsigned, satisfy the supercongruences A000984(n*p^r) == A000984(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that each row sequence of the table satisfies the same supercongruences.

A364507 a(n) = (5*n)!*(4*n)! / ((3*n)!^2 * (2*n)! * n!).

Original entry on oeis.org

1, 40, 5880, 1101100, 229265400, 50678855040, 11641642112100, 2746924727976000, 661097260785195000, 161538994454795003200, 39949572934939198410880, 9976687616280042928424700, 2511716999955421326631644900, 636662322699394050738883008000
Offset: 0

Views

Author

Peter Bala, Jul 27 2023

Keywords

Comments

Row 2 of A364506.

Examples

			Examples of supercongruences:
a(7) - a(1) = 2746924727976000 - 40 = (2^3)*5*(7^4)*28601881799 == 0 (mod 7^4).
a(11) - a(1) = 9976687616280042928424700 - 40 = (2^2)*5*(11^3)*18397*3568463* 5708869513 == 0 (mod 11^3).
		

Crossrefs

Programs

  • Maple
    seq( (5*n)!*(4*n)!*(2*n)! / ((3*n)!^2 * (2*n)!^2 * n!), n = 0..15);
  • Mathematica
    A364507[n_]:=(5n)!(4n)!/((3n)!^2(2n)!n!);Array[A364507,15,0] (* Paolo Xausa, Oct 06 2023 *)

Formula

a(n) = Sum_{k = -n..n} (-1)^k * binomial(2*n, n + k) * binomial(4*n, 2*n + k)^2 (showing a(n) to be integral). Compare with Dixon's identity, Sum_{k = -n..n} (-1)^k * binomial(2*n, n + k)^3 = (3*n)!/n!^3 = A006480(n).
P-recursive: a(n) = (20/9)*(4*n-1)*(4*n-3)*(5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)/((3*n-1)^2*(3*n-2)^2*n^2) * a(n-1) with a(0) = 1.
a(n) ~ c^n * sqrt(10)/(6*Pi*n), where c = (2^6)*(5^5)/(3^6).
a(n) = [x^n] G(x)^(20*n), where the power series G(x) = 1 + 2*x + 69*x^2 + 5647*x^3 + 618860*x^4 + 79241349*x^5 + 11177111981*x^6 + 1684171189810*x^7 + 266238907746252*x^8 + ... appears to have integer coefficients.
exp( Sum_{n > = 1} a(n)*x^n/n ) = F(x)^20, where the power series F(x) = 1 + 2*x + 149*x^2 + 18647*x^3 + 2913620*x^4 + 515276389*x^5 + 98628630997*x^6 + 19944410220744*x^7 + 4199273746072180*x^8 + ... appears to have integer coefficients.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r [added Aug 04 2023: the conjecture follows from Meštrović. equation 39].
a(n) = binomial(4*n,n)*binomial(5*n,2*n). - Christian Krause, Aug 03 2023

A364508 a(n) = (7*n)!*(6*n)!*(2*n)! / ((4*n)!^2 * (3*n)!^2 * n!).

Original entry on oeis.org

1, 350, 594594, 1299170600, 3164045050530, 8188909171581600, 22035578229399735000, 60924423899585957558848, 171839010049825493742617250, 492149504510899056782561257748, 1426695143534668869395862598229344, 4176678405144148418744441910948978000
Offset: 0

Views

Author

Peter Bala, Jul 27 2023

Keywords

Comments

Row 3 of A364506.

Examples

			Examples of supercongruences:
a(7) - a(1) = 60924423899585957558848 - 350 = 2*(7^4)*12687301936606821649 == 0 (mod 7^4).
a(11) - a(1) = 4176678405144148418744441910948978000 - 350 = 2*(5^2)*7*(11^3)* 29*139*1181*1883311859633620981885519 == 0 (mod 11^3).
		

Crossrefs

Programs

  • Maple
    seq( (7*n)!*(6*n)!*(2*n)! / ((4*n)!^2 * (3*n)!^2 * n!), n = 0..15);
  • Mathematica
    A364508[n_]:=(7n)!(6n)!(2n)!/((4n)!^2(3n)!^2n!);Array[A364508,15,0] (* Paolo Xausa, Oct 06 2023 *)

Formula

a(n) = Sum_{k = -n..n} (-1)^k * binomial(2*n, n + k) * binomial(6*n, 3*n + k)^2 (showing a(n) to be integral). Compare with Dixon's identity Sum_{k = -n..n} (-1)^k * binomial(2*n, n + k)^3 = (3*n)!/n!^3 = A006480(n).
P-recursive: a(n) = (7/4)*(6*n-1)*(6*n-5)*(7*n-1)*(7*n-2)*(7*n-3)*(7*n-4)*(7*n-5)*(7*n-6)/((3*n-1)*(3*n-2)*(4*n-1)^2*(4*n-3)^2*n^2) * a(n-1) with a(0) = 1.
a(n) ~ c^n * sqrt(21)/(12*Pi*n), where c = (7^7)/(2^8).
a(n) = [x^n] G(x)^(14*n), where the power series G(x) = 1 + 25*x + 12798*x^2 + 13543850*x^3 + 18933663145*x^4 + 30733263922830*x^5 + 54771428143877503*x^6 + 104061045049532102971*x^7 + 207134582792235253663131*x^8 + ... appears to have integer coefficients.
exp( Sum_{n > = 1} a(n)*x^n/n ) = F(x)^14, where the power series F(x) = 1 + 25*x + 21548*x^2 + 31466125*x^3 + 57506245907*x^4 + 119069165444705*x^5 + 266966985031172547*x^6 + 632553825380957995891*x^7 + 1560815989686060202098169*x^8 + ... appears to have integer coefficients.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r [added Oct 11 2024: follows from Meštrović, Section 6, equation 39, since a(n) = binomial(7*n, 3*n)*binomial(6*n, 3*n) *binomial(2*n, n)/binomial(4*n, n)].

A364510 a(n) = binomial(4*n, n)^2.

Original entry on oeis.org

1, 16, 784, 48400, 3312400, 240374016, 18116083216, 1401950721600, 110634634890000, 8862957169158400, 718528370729238784, 58818762721626513424, 4853704694918904043024, 403242220875862752160000, 33694913171561404510440000, 2829611125043050701300998400
Offset: 0

Views

Author

Peter Bala, Jul 28 2023

Keywords

Crossrefs

Programs

  • Maple
    seq( binomial(4*n,n)^2, n = 0..15);
  • Mathematica
    A364510[n_]:=Binomial[4n,n]^2;Array[A364510,15,0] (* Paolo Xausa, Oct 05 2023 *)

Formula

a(n) = Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i)^2 * binomial(4*n, 2*n+i).
Compare with Dixon's identity: Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i)^3 = (3*n)!/n!^3.
a(n) = A005810(n)^2.
P-recursive: a(n) = 16 * ( (4*n - 1)*(4*n - 2)*(4*n - 3)/(3*n*(3*n - 1)*(3*n - 2)) )^2 * a(n-1) with a(0) = 1.
a(n) ~ c^n * 2/(3*Pi*n), where c = (2^16)/(3^6).
a(n) = [x^n] G(x)^(16*n), where the power series G(x) = 1 + x + 9*x^2 + 225*x^3 + 7525*x^4 + 295228*x^5 + 12787152*x^6 + 592477457*x^7 + 28827755219*x^8 + ... appears to have integer coefficients.
exp( Sum_{n > = 1} a(n)*x^n/n ) = F(x)^16, where the power series F(x) = 1 + x + 25*x^2 + 1033*x^3 + 53077*x^4 + 3081944*x^5 + 193543624*x^6 + 12835533333*x^7 + 886092805699*x^8 + ... appears to have integer coefficients.
The supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3^r)) hold for all primes p >= 5 and all positive integers n and r.
a(n) = [x^(3*n)] ( (1 - x)^(6*n)*Legendre_P(2*n, (1 + x)/(1 - x)) ). - Peter Bala, Aug 14 2023

A365025 Square array read by antidiagonals: T(n, k) := (k/2)!/k! * ((2*n+1)*k)! * ((2*n+1/2)*k)! / ( (n*k)!^2 * ((n+1/2)*k)!^2 ) for n, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 126, 300, 1, 1, 1716, 79380, 11440, 1, 1, 24310, 20612592, 65523780, 485100, 1, 1, 352716, 5318784900, 328206021000, 60634147860, 21841260, 1, 1, 5200300, 1368494343216, 1552041334596844, 5876083665270000, 59774707082376, 1022041020, 1
Offset: 0

Views

Author

Peter Bala, Aug 17 2023

Keywords

Comments

Fractional factorials are defined in terms of the gamma function; for example, ((2*n+1/2)*k)! = Gamma(1 + (2*n+1/2)*k).
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_k(c, d) = (c_1*k)!*(c_2*k)!* ... *(c_K*k)!/ ( (d_1*k)!*(d_2*k)!* ... *(d_L*k)! ) and ask whether it is integral for all k >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
It is usually assumed that the c's and d's are integers but here we allow for some of the c's and d's to be half-integers. See A276098 for further examples of this type.
Each row sequence of the present table is an integral factorial ratio sequence of height 2.
Conjecture: each row sequence of the table satisfies the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r.

Examples

			 Square array begins:
 n\k|  0      1               2                    3                      4
  - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |  1      1               1                    1                      1  ...
  1 |  1     10             300                11440                 485100  ...
  2 |  1    126           79380             65523780            60634147860  ...
  3 |  1   1716        20612592         328206021000       5876083665270000  ...
  4 |  1  24310      5318784900     1552041334596844  510031828417402714500  ...
  5 |  1 352716   1368494343216  7108360304262169344 ...
		

Crossrefs

Cf. A275652 (row 1), A365026 (row 2), A365027 (row 3).

Programs

  • Maple
    # display as a square array
    T(n, k) := (k/2)!/k! * ((2*n+1)*k)! * ((2*n+1/2)*k)! / ( (n*k)!^2 * ((n+1/2)*k)!^2 ):
    seq( print(seq(simplify(T(n, k)), k = 0..10)), n = 0..10);
    # display as a sequence
    seq( seq(simplify(T(n-k, k)), k = 0..n), n = 0..10);
  • Python
    from itertools import count, islice
    from math import factorial
    from sympy import factorial2
    def A365025_T(n,k): return int(factorial2(k)*factorial(r:=((m:=n<<1)+1)*k)*factorial2(((m<<1)+1)*k)//((factorial(n*k)*factorial2(r))**2*factorial(k)))
    def A365025_gen(): # generator of terms
        for n in count(0):
            yield from (A365025_T(n-k,k) for k in range(n+1))
    A365025_list = list(islice(A365025_gen(),20)) # Chai Wah Wu, Aug 24 2023

Formula

T(n,k) = Sum_{j = 0..n*k} binomial((2*n+1)*k, n*k-j)^2 * binomial(k+j-1, j).
T(n,k) = binomial((2*n+1)*k,n*k)^2 * hypergeom([k, -n*k, -n*k], [1 + (n+1)*k, 1 + (n+1)*k], 1) = (k/2)!/k! * ((2*n+1)*k)! * ((2*n+1/2)*k)! / ( (n*k)!^2 * ((n+1/2)*k)!^2 ) by Dixon's 3F2 summation theorem.
T(n,k) = [x^(n*k)] ( (1 - x)^(2*n*k) * Legendre_P((2*n+1)*k, (1 + x)/(1 - x)) ).
T(n,k) = k!!*((2*n+1)*k)!*((4*n+1)*k)!!/(k!*((n*k)!*((2*n+1)*k)!!)^2). - Chai Wah Wu, Aug 24 2023

A364518 Square array read by ascending antidiagonals: T(n,k) = [x^(2*k)] ( (1 + x)^(n+2)/(1 - x)^(n-2) )^k for n, k >= 0.

Original entry on oeis.org

1, 1, -2, 1, 0, 6, 1, 6, -10, -20, 1, 16, 70, 0, 70, 1, 30, 630, 924, 198, -252, 1, 48, 2310, 28672, 12870, 0, 924, 1, 70, 6006, 204204, 1385670, 184756, -4420, -3432, 1, 96, 12870, 860160, 19122246, 69206016, 2704156, 0, 12870, 1, 126, 24310, 2704156, 130378950, 1848483780, 3528923580, 40116600, 104006, -48620
Offset: 0

Views

Author

Peter Bala, Aug 07 2023

Keywords

Comments

Compare with A364303 and A364519.
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L), where c_1 + ... + c_K = d_1 + ... + d_L, we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1 (see A295431). Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
Each row of the present table is an integral factorial ratio sequence of height 1. It is usually assumed that the c's and d's are integers but here some of the c's and d's are half-integers. See A276098 and the cross references there for further examples of this type.
It is known that the unsigned version of row 0 (the central binomial numbers A000984) and row 2 satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that all the row sequences of the table satisfy the same supercongruences.

Examples

			 Square array begins:
 n\k|  0   1      2        3           4             5
  - + - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |  1  -2      6      -20          70          -252   ... see A000984
  1 |  1   0    -10        0         198             0   ... see A211419
  2 |  1   6     70      924       12870        184756   ... A001448
  3 |  1  16    630    28672     1385670      69206016   ... A091496
  4 |  1  30   2310   204204    19122246    1848483780   ... A061162
  5 |  1  48   6006   860160   130378950   20392706048   ... A276098
  6 |  1  70  12870  2704156   601080390  137846528820   ... A001448 bisected
  7 |  1  96  24310  7028736  2149374150  678057476096   ... A276099
		

Crossrefs

Cf. A000984 (row 0 unsigned), A211419 (row 1 unsigned without 0's), A001448 (row 2), A091496 (row 3), A061162 (row 4), A276098 (row 5), A001448 bisected (row 6), A276099 (row 7).

Programs

  • Maple
    T(n,k) = add( binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j), j = 0..2*k):
    # display as a square array
    seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
    # display as a sequence
    seq(seq(T(n-k, k), k = 0..n), n = 0..10);
  • PARI
    T(n,k) = sum(j = 0, 2*k, binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j));
    lista(nn) = for( n=0, nn, for (k=0, n, print1(T(n-k, k), ", "))); \\ Michel Marcus, Aug 13 2023

Formula

T(n,k) = Sum_{j = 0..2*k} binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j).
T(2,k) = binomial(4*k,2*k).
For n >= 3, T(n,k) = binomial(n*k-1,2*k) * hypergeom([-(n+2)*k, -2*k], [1 - n*k], -1) except when (n,k) = (3,1).
For n >= 2, T(n,k) = ((n+2)*k)!*((n-2)*k/2)!/(((n+2)*k/2)!*((n-2)*k)!*(2*k)!) by Kummer's Theorem.
T(n,k) = [x^k] (1 - x)^(2*k) * Chebyshev_T(n*k, (1 + x)/(1 - x)).
T(n,k) = Sum_{j = 0..k} binomial(2*n*k, 2*j)*binomial((n-1)*k-j-1, k-j).
For n >= 3, T(n,k) = binomial((n-1)*k-1,k) * hypergeom([-n*k, -k, -n*k + 1/2], [1 - (n-1)*k, 1/2], 1).
The row generating functions are algebraic functions over the field of rational functions Q(x).
Showing 1-7 of 7 results.