cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A275652 a(n) = binomial(3*n,3*n/2)*binomial(2*n,n)*binomial(5*n/2,n/2)/binomial(n,n/2).

Original entry on oeis.org

1, 10, 300, 11440, 485100, 21841260, 1022041020, 49128552000, 2408829328620, 119918393838100, 6042249840712800, 307438844121252480, 15770112362658517500, 814459593645444166560, 42308586942403276440000, 2208850973597860123741440, 115825519836558228435979500
Offset: 0

Views

Author

Peter Bala, Aug 04 2016

Keywords

Comments

Right-hand side of the binomial sum identity Sum_{k = 0..n} (-1)^(n+k)* binomial(3*n+k,3*n-k)*binomial(2*k,k)*binomial(2*n-k,n) = binomial(3*n,3*n/2)*binomial(2*n,n)*binomial(5*n/2,n/2)/binomial(n,n/2).
We also have Sum_{k = 0..3*n} (-1)^k*binomial(3*n+k,3*n-k)* binomial(2*k,k)*binomial(2*n-k,n) = binomial(3*n,3*n/2)*binomial(2*n,n)* binomial(5*n/2,n/2) /binomial(n,n/2).
Compare with Sum_{k = 0..n} (-1)^(n+k)*binomial(2*n+k,2*n-k)* binomial(2*k,k)*binomial(2*n-k,n) = binomial(2*n,n)^2 = A002894(n). See also A275653, A275654 and A275655.

Crossrefs

Programs

  • Maple
    seq(simplify(factorial(3*n)*factorial(n/2)*factorial(5*n/2)/(factorial(n)^3*factorial(3*n/2)^2)), n = 0 .. 20);
  • Mathematica
    Table[Binomial[3 n, 3 n/2] Binomial[2 n, n] Binomial[5 n/2, n/2] / Binomial[n, n/2], {n, 0, 16}] (* Michael De Vlieger, Aug 07 2016 *)
  • PARI
    a(n) = sum(k = 0, n, binomial(2*n-k-1,n-k)*binomial(3*n,k)^2); \\ Michel Marcus, Apr 21 2022
    
  • Python
    from math import factorial
    from sympy import factorial2
    def A275652(n): return int(factorial(3*n)*factorial2(5*n)*factorial2(n)//factorial2(3*n)**2//factorial(n)**3) # Chai Wah Wu, Aug 08 2023

Formula

a(n) = (3*n)!*(5*n/2)!*(n/2)!/((3*n/2)!^2*n!^3).
Recurrence: a(n) = 5*(3*n - 1)*(3*n - 5)*(5*n - 2)*(5*n - 4)*(5*n - 6)*(5*n - 8)/(n^2*(n - 1)^2*(3*n - 2)*(3*n - 4)) * a(n-2).
a(n) = [x^n] G(x)^(5*n), where G(x) = 1 + 2*x + 12*x^2 + 184*x^3 + 3811*x^4 + 92796*x^5 + 2497358*x^6 + ... appears to have integer coefficients.
exp(Sum_{n >= 1} a(n)*x^n/n) = F(x)^5, where F(x) = 1 + 2*x + 32*x^2 + 824*x^3 + 26291*x^4 + 947506*x^5 + 36934522*x^6 + ... appears to have integer coefficients.
a(n) ~ sqrt(5/3)*5^(5*n/2)/(2*Pi*n). - Ilya Gutkovskiy, Aug 07 2016
From Peter Bala, Mar 22 2022: (Start)
For n >= 1, a(n) = (5/3)*binomial(m*n,2*n)*binomial(m*n/2,2*n)*binomial(2*n,n)^2/ binomial(m*n/2,n)^2 at m = -1. See A352651 for the case m = 1.
a(n) = Sum_{k = 0..n} binomial(2*n-k-1,n-k)*binomial(3*n,k)^2.
a(n) = [x^n] (1 - x)^(2*n) * P(3*n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Cf. A245086.
a(p) == a(1) (mod p^3) for prime p >= 5.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k. (End)
Row 1 of A365025. - Peter Bala, Aug 18 2023

A364506 Square array read by ascending antidiagonals: T(n,k) = (2*k)!/k! * ( (2*n*k)! * ((2*n+1)*k)! )/( (n*k)!^2 * ((n+1)*k)!^2 ).

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 40, 90, 20, 1, 350, 5880, 1680, 70, 1, 3528, 594594, 1101100, 34650, 252, 1, 38808, 75088728, 1299170600, 229265400, 756756, 924, 1, 453024, 10861066216, 2066315135040, 3164045050530, 50678855040, 17153136, 3432, 1, 5521230, 1721929279200, 3943172216808000
Offset: 0

Views

Author

Peter Bala, Jul 27 2023

Keywords

Comments

Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_k(c, d) = (c_1*k)!*(c_2*k)!* ... *(c_K*k)!/ ( (d_1*k)!*(d_2*k)!* ... *(d_L*k)! ) and ask whether it is integral for all k >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
Each row sequence of the present table is an integral factorial ratio sequence of height 2.
It is known that both row 0, the central binomial numbers, and row 1, the de Bruijn numbers, satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that all the row sequences of the table satisfy the same supercongruences.

Examples

			 Square array begins:
 n\k|  0     1         2              3                  4                 5
  - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |  1     2         6             20                 70               252 ...
  1 |  1     6        90           1680              34650            756756 ...
  2 |  1    40      5880        1101100          229265400       50678855040 ...
  3 |  1   350    594594     1299170600      3164045050530  8188909171581600 ...
  4 |  1  3528  75088728  2066315135040  63464046079757400  ...
  5 |  1 38808  ...
		

Crossrefs

A000984 (row 0), A006480 (row 1), A364507 (row 2), A364508 (row 3). Cf. A364303, A364509, A365025.

Programs

  • Maple
    # display as a square array
    T(n,k) := (2*k)!/k! * ( (2*n*k)! * ((2*n+1)*k)! )/((n*k)!^2 * ((n+1)*k)!^2):
    seq( print(seq(T(n,k), k = 0..10)), n = 0..10);
    # display as a sequence
    seq( seq(T(n-k,k), k = 0..n), n = 0..10);

Formula

T(n,k) = Sum_{i = -k..k} (-1)^i * binomial(2*k, k+i) * binomial(2*n*k, n*k+i)^2 (shows that the table entries are integers).
For n >= 1, T(n,k) = (-1)^k * binomial(2*n*k, (n+1)*k)^2 * hypergeom([-2*k, -(n+1)*k, -(n+1)*k], [1 + (n-1)*k, 1 + (n-1)*k], 1) = (2*k)!/k! * ( (2*n*k)! * ((2*n+1)*k)! )/( (n*k)!^2 * ((n+1)*k)!^2 ) by Dixon's 3F2 summation theorem.
T(n,k) = (-1)^k * [x^((n + 1)*k)] ( (1 - x)^(2*(n+1)*k) * Legendre_P(2*n*k, (1 + x)/(1 - x)) ). - Peter Bala, Aug 15 2023

A365026 a(n) = (5*n)!*(9*n/2)!*(n/2)! / ((2*n)!^2 * (5*n/2)!^2 * n!).

Original entry on oeis.org

1, 126, 79380, 65523780, 60634147860, 59774707082376, 61346313465418800, 64736852770959042240, 69724035322703253191700, 76277370761329867481375100, 84482032811073922526904281880, 94508142285721995026811874069200, 106599928449546340546215262030974000
Offset: 0

Views

Author

Peter Bala, Aug 17 2023

Keywords

Comments

Fractional factorials are defined in terms of the gamma function; for example, (9*n/2)! = Gamma(1 + 9*n/2).
Row 2 of A365025.

Crossrefs

Programs

  • Maple
    seq( simplify((5*n)!*(9*n/2)!*(n/2)! / ((2*n)!^2 * (5*n/2)!^2 * n!)), n = 0..15);
  • Mathematica
    A365026[n_]:=(5n)!(9n/2)!(n/2)!/((2n)!^2(5n/2)!^2n!);Array[A365026,15,0] (* Paolo Xausa, Oct 05 2023 *)
  • Python
    from math import factorial
    from sympy import factorial2
    def A365026(n): return int(factorial(5*n)*factorial2(9*n)*factorial2(n)//((factorial2(5*n)*factorial(n<<1))**2*factorial(n))) # Chai Wah Wu, Aug 24 2023

Formula

a(n) = Sum_{j = 0..2*n} binomial(5*n, 2*n-j)^2 * binomial(n+j-1, j).
P-recursive: (5*n-2)*(5*n-4)*(5*n-6)*(5*n-8)*(2*n)^2*(2*n-1)^2*(2*n-2)^2*(2*n-3)^2*a(n)= 9*(9*n-2)*(9*n-4)*(9*n-6)*(9*n-8)*(9*n-10)*(9*n-12)*(9*n-14)*(9*n-16)*(5*n-1)*(5*n-3)*(5*n-7)*(5*n-9)*a(n-2) with a(0) = 1 and a(1) = 126.
a(n) ~ c^n * 3*sqrt(5)/(20*Pi*n), where c = (3^9)/(2^4).
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all integers n and r.
a(n) = [x^n] G(x)^(9*n), where the power series G(x) = 1 + 14*x + 2744*x^2 + 1130724*x^3 + 615596785*x^4 + 388901411712*x^5 + 269588153179744*x^6 + ... appears to have integer coefficients.
exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^9, where the power series F(x) = 1 + 14*x + 4508*x^2 + 2489004*x^3 + 1728415009*x^4 + 1362984972918*x^5 + 1165343050808188*x^6 + ... appears to have integer coefficients.

A365027 a(n) = (7*n)!*(13*n/2)!*(n/2)! / ((3*n)!^2 * (7*n/2)!^2 * n!).

Original entry on oeis.org

1, 1716, 20612592, 328206021000, 5876083665270000, 112210544802995673216, 2232092469681027490937400, 45670179632369542491712236480, 953926390279492216468973361270000, 20241460048032081192591594667805420400, 434878619369192244460121948456800558766592
Offset: 0

Views

Author

Peter Bala, Aug 18 2023

Keywords

Comments

Fractional factorials are defined in terms of the gamma function; for example, (13*n/2)! = Gamma(1 + 13*n/2).
Row 3 of A365025.

Crossrefs

Programs

  • Maple
    seq( simplify((7*n)!*(13*n/2)!*(n/2)! / ((3*n)!^2 * (7*n/2)!^2 * n!)), n = 0..15);
  • Mathematica
    A365027[n_]:=(7n)!(13n/2)!(n/2)!/((3n)!^2(7n/2)!^2n!);Array[A365027,10,0] (* Paolo Xausa, Oct 05 2023 *)
  • Python
    from math import factorial
    from sympy import factorial2
    def A365027(n): return int(factorial(7*n)*factorial2(13*n)*factorial2(n)//((factorial2(7*n)*factorial(3*n))**2*factorial(n))) # Chai Wah Wu, Aug 24 2023

Formula

a(n) = Sum_{j = 0..3*n} binomial(7*n, 3*n-j)^2 * binomial(n+j-1, j).
a(n) ~ c^n * sqrt(91)/(42*Pi*n), where c = sqrt(13)*(13/3)^6.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all integers n and r.
a(n) = [x^n] G(x)^(78*n), where the power series G(x) = 1 + 22*x + 94622*x^2 + 821626080*x^3 + 9321370449728*x^4 + 122052794640882192*x^5 + 1748115226331150054950*x^6 + ... appears to have integer coefficients.
exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^78, where the power series F(x) = 1 + 22*x + 132374*x^2 + 1405498512*x^3 + 18873219886000*x^4 + 288319543590164888*x^5 + 4779239354183722040470*x^6 + ... appears to have integer coefficients.
Showing 1-4 of 4 results.