A364518 Square array read by ascending antidiagonals: T(n,k) = [x^(2*k)] ( (1 + x)^(n+2)/(1 - x)^(n-2) )^k for n, k >= 0.
1, 1, -2, 1, 0, 6, 1, 6, -10, -20, 1, 16, 70, 0, 70, 1, 30, 630, 924, 198, -252, 1, 48, 2310, 28672, 12870, 0, 924, 1, 70, 6006, 204204, 1385670, 184756, -4420, -3432, 1, 96, 12870, 860160, 19122246, 69206016, 2704156, 0, 12870, 1, 126, 24310, 2704156, 130378950, 1848483780, 3528923580, 40116600, 104006, -48620
Offset: 0
Examples
Square array begins: n\k| 0 1 2 3 4 5 - + - - - - - - - - - - - - - - - - - - - - - - - - - 0 | 1 -2 6 -20 70 -252 ... see A000984 1 | 1 0 -10 0 198 0 ... see A211419 2 | 1 6 70 924 12870 184756 ... A001448 3 | 1 16 630 28672 1385670 69206016 ... A091496 4 | 1 30 2310 204204 19122246 1848483780 ... A061162 5 | 1 48 6006 860160 130378950 20392706048 ... A276098 6 | 1 70 12870 2704156 601080390 137846528820 ... A001448 bisected 7 | 1 96 24310 7028736 2149374150 678057476096 ... A276099
Links
- Peter Bala, Some integer ratios of factorials
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc. (2) 79 2009, 422-444.
- K. Soundararajan, Integral factorial ratios: irreducible examples with height larger than 1, Phil. Trans. Royal Soc., A378: 2018044, 2019.
- Wikipedia, Dixon's identity
- Wikipedia, Hypergeometric function
Crossrefs
Programs
-
Maple
T(n,k) = add( binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j), j = 0..2*k): # display as a square array seq(print(seq(T(n, k), k = 0..10)), n = 0..10); # display as a sequence seq(seq(T(n-k, k), k = 0..n), n = 0..10);
-
PARI
T(n,k) = sum(j = 0, 2*k, binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j)); lista(nn) = for( n=0, nn, for (k=0, n, print1(T(n-k, k), ", "))); \\ Michel Marcus, Aug 13 2023
Formula
T(n,k) = Sum_{j = 0..2*k} binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j).
T(2,k) = binomial(4*k,2*k).
For n >= 3, T(n,k) = binomial(n*k-1,2*k) * hypergeom([-(n+2)*k, -2*k], [1 - n*k], -1) except when (n,k) = (3,1).
For n >= 2, T(n,k) = ((n+2)*k)!*((n-2)*k/2)!/(((n+2)*k/2)!*((n-2)*k)!*(2*k)!) by Kummer's Theorem.
T(n,k) = [x^k] (1 - x)^(2*k) * Chebyshev_T(n*k, (1 + x)/(1 - x)).
T(n,k) = Sum_{j = 0..k} binomial(2*n*k, 2*j)*binomial((n-1)*k-j-1, k-j).
For n >= 3, T(n,k) = binomial((n-1)*k-1,k) * hypergeom([-n*k, -k, -n*k + 1/2], [1 - (n-1)*k, 1/2], 1).
The row generating functions are algebraic functions over the field of rational functions Q(x).
Comments