A364519 Square array read by ascending antidiagonals: T(n,k) = [x^(3*k)] ( (1 + x)^(n+3)/(1 - x)^(n-3) )^k for n, k >= 0.
1, 1, 0, 1, -4, -20, 1, 0, 28, 0, 1, 20, -84, -220, 924, 1, 64, 924, 0, 1820, 0, 1, 140, 12012, 48620, 16796, -15504, -48620, 1, 256, 60060, 2621440, 2704156, 0, 134596, 0, 1, 420, 204204, 29745716, 608435100, 155117520, -3801900, -1184040, 2704156, 1, 640, 554268, 187432960, 15628090140, 146028888064, 9075135300, 0, 10518300, 0
Offset: 0
Examples
Square array begins: n\k| 0 1 2 3 4 5 - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 | 1 0 -20 0 924 0 ... see A066802 1 | 1 -4 28 -220 1820 -15504 ... see A005810 2 | 1 0 -84 0 16796 0 3 | 1 20 924 48620 2704156 155117520 ... A066802 4 | 1 64 12012 2621440 608435100 146028888064 ... A364520 5 | 1 140 60060 29745716 15628090140 8480843582640 ... A211420
Links
- Peter Bala, Some integer ratios of factorials
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc. (2) 79 2009, 422-444.
- Wikipedia, Hypergeometric function
Crossrefs
Programs
-
Maple
T(n,k) := add( binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j), j = 0..3*k): # display as a square array seq(print(seq(T(n, k), k = 0..10)), n = 0..10); # display as a sequence seq(seq(T(n-k, k), k = 0..n), n = 0..10);
-
PARI
T(n,k) = sum(j = 0, 3*k, binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j)); lista(nn) = for( n=0, nn, for (k=0, n, print1(T(n-k, k), ", "))); \\ Michel Marcus, Aug 13 2023
Formula
T(n,k) = Sum_{j = 0..3*k} binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j).
For n >= 3, T(n,k) = binomial(n*k-1,3*k) * hypergeom([-(n+3)*k, -3*k], [1 - n*k], -1) = ((n+3)*k)!*((n-3)*k/2)!/(((n+3)*k/2)!*((n-3)*k)!*(3*k)!) by Kummer's Theorem.
The row generating functions are algebraic functions over the field of rational functions Q(x).
Comments