A364534 Number of subsets of {1..n} containing some element equal to the sum of two or more distinct other elements. A variation of sum-full subsets without re-used elements.
0, 0, 0, 1, 3, 10, 27, 68, 156, 357, 775, 1667, 3505, 7303, 15019, 30759, 62489, 126619, 255542, 514721, 1034425, 2076924, 4164650, 8346306, 16715847, 33467324, 66982798, 134040148, 268179417, 536510608, 1073226084, 2146759579, 4293930436, 8588485846, 17177799658
Offset: 0
Keywords
Examples
The a(0) = 0 through a(5) = 10 subsets: . . . {1,2,3} {1,2,3} {1,2,3} {1,3,4} {1,3,4} {1,2,3,4} {1,4,5} {2,3,5} {1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5} {1,2,3,4,5}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..85
Crossrefs
The complement is counted by A151897.
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Subsets[#,{2,Length[#]}]]!={}&]],{n,0,10}]
Formula
a(n) = 2^n - A151897(n). - Andrew Howroyd, Jan 27 2024
Extensions
a(16)-a(25) from Chai Wah Wu, Nov 14 2023
a(26) onwards (using A151897) added by Andrew Howroyd, Jan 27 2024