cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364499 a(n) = A005940(n) - n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 0, -2, 0, 4, 0, 12, 4, 12, 0, -6, -4, 2, 0, 14, 8, 22, 0, 24, 24, 48, 8, 96, 24, 50, 0, -20, -12, -2, -8, 18, 4, 24, 0, 36, 28, 62, 16, 130, 44, 88, 0, 72, 48, 96, 48, 192, 96, 170, 16, 286, 192, 316, 48, 564, 100, 180, 0, -48, -40, -28, -24, -4, -4, 28, -16, 18, 36, 90, 8, 198, 48, 110, 0, 62
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Compare to the scatter plot of A364563.
From Antti Karttunen, Aug 11 2023: (Start)
Can be computed as a certain kind of bitmask transformation of A364568 (analogous to the inverse Möbius transform that is appropriate for A156552-encoding of n).
See A364572, A364573 (and also A364576) for n (apart from those in A029747) where a(n) comes relatively close to the X-axis.
(End)

Examples

			A005940(528577) = 528581, therefore a(528577) = 528581 - 528577 = 4. (See A364576).
A005940(2109697) = 2109629, therefore a(2109697) = 2109629 - 2109697 = -68.
		

Crossrefs

Cf. A005940, A364500 [= gcd(n,a(n))], A364559, A364572, A364573, A364576.
Cf. A029747 (known positions of 0's), A364540 (positions of terms < 0), A364541 (of terms <= 0), A364542 (of terms >= 0), A364563 [= -a(A364543(n))].
Cf. also A364258, A364568.

Programs

  • Mathematica
    nn = 81; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Array[a[#] - # &, nn] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A364499(n) = (A005940(n)-n);
    
  • PARI
    A364499(n) = { my(m=1,p=2,x=0,z=1); n--; while(n, if(!(n%2), p=nextprime(1+p), x += m; z *= p); n>>=1; m <<=1); (z-x)-1; }; \\ Antti Karttunen, Aug 06 2023
    
  • Python
    from math import prod
    from itertools import accumulate
    from collections import Counter
    from sympy import prime
    def A364499(n): return prod(prime(len(a)+1)**b for a, b in Counter(accumulate(bin(n-1)[2:].split('1')[:0:-1])).items())-n # Chai Wah Wu, Aug 07 2023

Formula

a(n) = -A364559(A005940(n)).
For all n >= 1, a(2*n) = 2*a(n).
For all n >= 1, a(A029747(n)) = 0.

A364542 Numbers k for which A005940(k) >= k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Sequence A005941(A364560(.)) sorted into ascending order.
A029747 is included as a subsequence, because it gives the known fixed points of map n -> A005940(n).
Differs from A343107 for the first time at a(22) = 25, which term is not present in A343107. On the other hand, 35 is the first term of A343107 that is not present in this sequence.

Crossrefs

Positions of nonnegative terms in A364499.
Complement of A364540.
Cf. A005940, A005941, A029747 (subsequence), A343107 (not a subsequence), A364560.

Programs

  • Mathematica
    nn = 95; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Select[Range[nn], a[#] >= # &] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    isA364542(n) = (A005940(n)>=n);

A364541 Numbers k for which A005940(k) <= k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 35, 36, 40, 48, 64, 65, 66, 67, 68, 69, 70, 72, 80, 96, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 144, 160, 192, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 272, 273, 274, 276, 280, 288, 289, 320, 384, 385, 512
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

A029747 is included as a subsequence, because it gives the known fixed points of map n -> A005940(n).

Crossrefs

Positions of nonpositive terms in A364499.
Subsequences: A029747, A364540.

Programs

  • Mathematica
    nn = 512; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Select[Range[nn], a[#] <= # &] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    isA364541(n) = (A005940(n)<=n);
Showing 1-3 of 3 results.