cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364551 Odd numbers k such that k is a multiple of A005941(k).

Original entry on oeis.org

1, 3, 5, 3125, 7875, 12005, 13365, 22869, 23595, 46475, 703395, 985439, 2084775, 2675673, 13619125, 19144125
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Odd numbers k such that k is a multiple of 1+A156552(k).
Sequence A005940(A364545(n)) sorted into ascending order.
This is a subsequence of A364561, so the comments given in A364564 apply also here (see also the example section).

Examples

			In all these cases, the right hand side is a divisor of the left hand side:
      Term   (and its factorization)             A005941(term)
         1   (unity)                         ->    1
         3   (prime)                         ->    3
         5   (prime)                         ->    5
      3125 = 5^5                             ->    125 = 5^3
      7875 = 3^2 * 5^3 * 7                   ->    375 = 3 * 5^3
     12005 = 5 * 7^4                         ->    245 = 5 * 7^2
     13365 = 3^5 * 5 * 11                    ->    1215 = 3^5 * 5
     22869 = 3^3 * 7 * 11^2                  ->    847 = 7 * 11^2
     23595 = 3 * 5 * 11^2 * 13               ->    715 = 5 * 11 * 13
     46475 = 5^2 * 11 * 13^2                 ->    845 = 5 * 13^2
    703395 = 3^2 * 5 * 7^2 * 11 * 29         ->    33495 = 3 * 5 * 7 * 11 * 29
    985439 = 7^3 * 13^2 * 17                 ->    2873 = 13^2 * 17
   2084775 = 3 * 5^2 * 7 * 11 * 19^2         ->    12635 = 5 * 7 * 19^2
   2675673 = 3^5 * 7 * 11^2 * 13             ->    11583 = 3^4 * 11 * 13
  13619125 = 5^3 * 13 * 17^2 * 29            ->    36125 = 5^3 * 17^2
  19144125 = 3^2 * 5^3 * 7 * 11 * 13 * 17    ->    21879 = 3^2 * 11 * 13 * 17.
		

Crossrefs

Subsequence of A364561, which is a subsequence of A364560.

Programs

  • PARI
    A005941(n) = { my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1])-1); res += (p * p2 * (2^(f[i, 2])-1)); p2 <<= f[i, 2]); (1+res) }; \\ (After David A. Corneth's program for A156552)
    isA364551(n) = ((n%2)&&!(n%A005941(n)));