A364553 Number of edges in the n-Pell graph.
0, 1, 5, 18, 58, 175, 507, 1428, 3940, 10701, 28705, 76230, 200766, 525083, 1365175, 3531240, 9093512, 23325785, 59625981, 151947066, 386139650, 978834759, 2475645491, 6248406780, 15740857452, 39585199525, 99389810585, 249177006702, 623846750086, 1559888545075
Offset: 0
Links
- E. Munarini, Pell Graphs, Disc. Math., 342 (2019), 2415-2428.
- Eric Weisstein's World of Mathematics, Edge Count
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Maximum Clique
- Eric Weisstein's World of Mathematics, Pell Graph
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,-1).
Programs
-
Maple
A364553 := n -> (n/8)*((2 + sqrt(2))*(1 + sqrt(2))^n - (sqrt(2) - 2)*(1 - sqrt(2))^n): seq(simplify(A364553(n)), n=0..29); # Peter Luschny, Jul 30 2023
-
Mathematica
Table[n Fibonacci[n + 1, 2]/2, {n, 0, 20}] Table[n (Fibonacci[n, 2] + (-I)^n ChebyshevT[n, I])/2, {n, 0, 20}] Table[With[{s = Sqrt[2]}, n ((s + 2) (1 + s)^n - (s - 2) (1 - s)^n)/8], {n, 0, 20}] // Expand LinearRecurrence[{4, -2, -4, -1}, {0, 1, 5, 18}, 20] CoefficientList[Series[x (1 + x)/(-1 + 2 x + x^2)^2, {x, 0, 20}], x]
-
Python
# Using function 'delannoy_row' from A008288. def A364553(n:int) -> int: return sum(k * delannoy_row(n)[k] for k in range(n + 1)) print([A364553(n) for n in range(30)]) # Peter Luschny, Jul 30 2023
Formula
a(n) = n*A000129(n+1)/2.
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4).
G.f.: x*(1+x)/(-1+2*x+x^2)^2.
From Peter Luschny, Jul 31 2023: (Start)
a(n) = (n/8)*((2 + sqrt(2))*(1 + sqrt(2))^n - (sqrt(2) - 2)*(1 - sqrt(2))^n).
With this formula, the sequence can be continued to the left half of the number line: a(-n) = -(-1)^n*A026937(n-2) for n >= 0.
a(n) = Sum_{k=0..n} k * A008288(n, k). (End)
Comments