cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364553 Number of edges in the n-Pell graph.

Original entry on oeis.org

0, 1, 5, 18, 58, 175, 507, 1428, 3940, 10701, 28705, 76230, 200766, 525083, 1365175, 3531240, 9093512, 23325785, 59625981, 151947066, 386139650, 978834759, 2475645491, 6248406780, 15740857452, 39585199525, 99389810585, 249177006702, 623846750086, 1559888545075
Offset: 0

Views

Author

Eric W. Weisstein, Jul 28 2023

Keywords

Comments

For n > 0, also the number of maximum and maximal cliques in the n-Pell graph.

Crossrefs

Programs

  • Maple
    A364553 := n -> (n/8)*((2 + sqrt(2))*(1 + sqrt(2))^n - (sqrt(2) - 2)*(1 - sqrt(2))^n): seq(simplify(A364553(n)), n=0..29); # Peter Luschny, Jul 30 2023
  • Mathematica
    Table[n Fibonacci[n + 1, 2]/2, {n, 0, 20}]
    Table[n (Fibonacci[n, 2] + (-I)^n ChebyshevT[n, I])/2, {n, 0, 20}]
    Table[With[{s = Sqrt[2]}, n ((s + 2) (1 + s)^n - (s - 2) (1 - s)^n)/8], {n, 0, 20}] // Expand
    LinearRecurrence[{4, -2, -4, -1}, {0, 1, 5, 18}, 20]
    CoefficientList[Series[x (1 + x)/(-1 + 2 x + x^2)^2, {x, 0, 20}], x]
  • Python
    # Using function 'delannoy_row' from A008288.
    def A364553(n:int) -> int:
        return sum(k * delannoy_row(n)[k] for k in range(n + 1))
    print([A364553(n) for n in range(30)])  # Peter Luschny, Jul 30 2023

Formula

a(n) = n*(A000129(n) + A001333(n))/2.
a(n) = n*A000129(n+1)/2.
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4).
G.f.: x*(1+x)/(-1+2*x+x^2)^2.
From Peter Luschny, Jul 31 2023: (Start)
a(n) = (n/8)*((2 + sqrt(2))*(1 + sqrt(2))^n - (sqrt(2) - 2)*(1 - sqrt(2))^n).
With this formula, the sequence can be continued to the left half of the number line: a(-n) = -(-1)^n*A026937(n-2) for n >= 0.
a(n) = (A093967(n) + A364636(n)) / 2.
a(n) = Sum_{k=0..n} k * A008288(n, k). (End)