cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364557 Möbius transform of A005941.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 8, 4, 4, 4, 16, 4, 32, 8, 4, 8, 64, 4, 128, 8, 8, 16, 256, 8, 8, 32, 8, 16, 512, 4, 1024, 16, 16, 64, 8, 8, 2048, 128, 32, 16, 4096, 8, 8192, 32, 8, 256, 16384, 16, 16, 8, 64, 64, 32768, 8, 16, 32, 128, 512, 65536, 8, 131072, 1024, 16, 32, 32, 16, 262144, 128, 256, 8, 524288, 16, 1048576, 2048
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Crossrefs

Programs

  • PARI
    A364557(n) = if(1==n, 1, 2^(primepi(vecmax(factor(n)[, 1]))+(bigomega(n)-omega(n))-1));
    
  • PARI
    A005941(n) = { my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1])-1); res += (p * p2 * (2^(f[i, 2])-1)); p2 <<= f[i, 2]); (1+res) }; \\ (After David A. Corneth's program for A156552)
    A364557(n) = sumdiv(n,d,moebius(n/d)*A005941(d));
    
  • Python
    from sympy import factorint, primepi
    def A364557(n): return 1<1 else 1 # Chai Wah Wu, Jul 29 2023

Formula

a(n) = Sum_{d|n} A008683(n/d) * A005941(d).
a(1) = 1; for n > 1, a(n) = A297112(n) = 2^(A297113(n)-1) = 2^A297167(n).