A364575 a(n) = A364574(A005940(1+n)), where A364574 is the Dirichlet inverse of A005941 [the inverse permutation of A005940].
1, -2, -3, 0, -5, 6, 2, 0, -9, 10, 19, 0, 12, -4, 0, 0, -17, 18, 35, 0, 69, -38, -22, 0, 56, -24, -64, 0, -24, 0, 0, 0, -33, 34, 67, 0, 133, -70, -42, 0, 265, -138, -339, 0, -276, 44, 8, 0, 240, -112, -288, 0, -640, 128, 124, 0, -336, 48, 176, 0, 48, 0, 0, 0, -65, 66, 131, 0, 261, -134, -82, 0, 521, -266, -659, 0
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16383
Crossrefs
Programs
-
PARI
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; A005941(n) = { my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1])-1); res += (p * p2 * (2^(f[i, 2])-1)); p2 <<= f[i, 2]); (1+res) }; \\ (After David A. Corneth's program for A156552) memoA364574 = Map(); A364574(n) = if(1==n,1,my(v); if(mapisdefined(memoA364574,n,&v), v, v = -sumdiv(n,d,if(d
A005941(n/d)*A364574(d),0)); mapput(memoA364574,n,v); (v))); A364575(n) = A364574(A005940(1+n));