A364656 Number of strict interval closure operators on a set of n elements.
1, 1, 4, 45, 2062, 589602, 1553173541
Offset: 0
Examples
The a(3) = 45 set-systems are the following ({} and {1,2,3} not shown). {1} {1}{2} {1}{2}{3} {1}{2}{3}{12} {1}{2}{3}{12}{13} {2} {1}{3} {1}{2}{12} {1}{2}{3}{13} {1}{2}{3}{12}{23} {3} {2}{3} {1}{2}{13} {1}{2}{3}{23} {1}{2}{3}{13}{23} {12} {1}{12} {1}{2}{23} {1}{2}{12}{13} {13} {1}{13} {1}{3}{12} {1}{2}{12}{23} {23} {1}{23} {1}{3}{13} {1}{3}{12}{13} {1}{2}{3}{12}{13}{23} {2}{12} {1}{3}{23} {1}{3}{13}{23} {2}{13} {2}{3}{12} {2}{3}{12}{23} {2}{23} {2}{3}{13} {2}{3}{13}{23} {3}{12} {2}{3}{23} {3}{13} {1}{12}{13} {3}{23} {2}{12}{23} {3}{13}{23}
References
- G. M. Bergman. Lattices, Closure Operators, and Galois Connections. Springer, Cham. 2015. 173-212.
Links
- Victor Chepoi, Separation of Two Convex Sets in Convexity Structures
- Dmitry I. Ignatov, Supporting iPython code for counting strict interval closure operators up to n=6, Github repository
- Wikipedia, Closure operator
Programs
-
Mathematica
Table[With[{closure = {X, set} |-> Intersection @@ Select[X, SubsetQ[#, set] &]}, Select[ Select[ Join[{{}, Range@n}, #] & /@ Subsets@Subsets[Range@n, {1, n - 1}], SubsetQ[#, Intersection @@@ Subsets[#, {2}]] &], X |-> AllTrue[Complement[Subsets@Range@n, X], S |-> \[Not] AllTrue[Subsets[S, {1, 2}], SubsetQ[S, closure[X, #]] &]]]] // Length, {n, 4}]
Extensions
New offset and a(5)-a(6) from Dmitry I. Ignatov, Nov 14 2023
Comments