A364690 Prime powers q such that there does not exist an elliptic curve E over GF(q) with cardinality q + 1 + floor(2*sqrt(q)).
128, 2048, 2187, 16807, 32768, 131072, 524288, 1953125, 2097152, 8388608, 14348907, 48828125, 134217728, 536870912, 30517578125, 549755813888, 847288609443, 2199023255552, 19073486328125, 140737488355328, 562949953421312, 36028797018963968, 144115188075855872, 450283905890997363
Offset: 1
Keywords
Examples
The first few values of the sequence (factorized) are 2^7, 2^11, 3^7, 7^5, 2^15, 2^17, 2^19, 5^9, 2^21, 2^23, 3^15, 5^11, 2^27, 2^29, ...
Links
- Katie Ahrens and Jon Grantham, Table of n, a(n) for n = 1..146
- Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197-272.
- W. C. Waterhouse, Abelian varieties over finite fields, Ann Sci. E.N.S., (4) 2 (1969), 521-560.
Programs
-
Sage
for q in range(1, 100000): if Integer(q).is_prime_power(): p = Integer(q).prime_factors()[0] if (floor(2*sqrt(q))%p == 0) and (not Integer(q).is_square()) and (q != p): print(q)
Comments