A344989 Smallest number whose number of partitions into n distinct primes is n, or zero if there are no such partitions.
2, 16, 26, 33, 55, 59, 0, 0, 124, 159, 233, 227, 276, 0, 372, 480, 0, 0, 0, 752, 0, 920, 0, 1011, 0, 1211, 1425, 0, 0, 0, 0, 0, 2050, 2336, 2495, 0, 0, 0, 0, 3340, 0, 3712, 0, 0, 4303, 0, 0, 0, 0, 5195, 0, 5669, 0, 6163, 6673, 0, 0, 0, 7504, 0, 0, 8670, 0, 9304, 9623, 0, 0, 0, 10638, 10981, 0, 12062, 0
Offset: 1
Examples
a(2) = 16 because 16 is the smallest number whose number of partitions into 2 distinct primes is 2; 16 = 3+13 = 5+11.
Links
- Chris K. Caldwell and G. L. Honaker, Jr., Prime Curios! 233
Crossrefs
Extensions
a(12)-a(20) from Alois P. Heinz, Jun 04 2021
More terms from David A. Corneth, Aug 21 2025
Comments