A364781 Triangular array read by rows: T(n, k) is the number of zero-energy states from the partition function in the Ising model for a finite n*k square lattice with periodic boundary conditions.
0, 2, 12, 0, 26, 0, 2, 100, 1346, 20524, 0, 322, 0, 272682, 0, 2, 1188, 72824, 3961300, 226137622, 13172279424, 0, 4258, 0, 58674450, 0, 777714553240, 0, 2, 15876, 3968690, 876428620, 199376325322, 46463664513012, 10990445640557042, 2627978003957146636, 0, 59138, 0, 13184352554, 0, 2799323243348702, 0, 633566123999182005386, 0
Offset: 1
Examples
Triangle begins: 0; 2, 12; 0, 26, 0; 2, 100, 1346, 20524; 0, 322, 0, 272682, 0; 2, 1188, 72824, 3961300, 226137622, 13172279424; 0, 4258, 0, 58674450, 0, 777714553240, 0; 2, 15876, 3968690, 876428620, 199376325322, 46463664513012, 10990445640557042, 2627978003957146636; ...
Links
- Manuel Kauers, Triangular array flattened. Table of n, a(n) for n = 1..120
- Roland Häggkvist, Anders Rosengren, Daniel Andrén, Petras Kundrotas, Per Håkan Lundow, and Klas Markström, Computation of the Ising partition function for 2-dimensional square grids, Phys. Rev. E 69, 046104 (April 16 2004).
- Manuel Kauers, Onsager's solution of the Ising model could have been guessed, presentation slides (2018).
- Thomas Scheuerle, Some values for T(k, k) from Klas Markström and R. Häggkvist et al., extracted from calculation results provided with their work. (See link.)
Programs
-
MATLAB
function a = A364781( n, k ) a = 0; for m = 1:2^(n*k)-2 if isingSum( reshape(1-2*bitget(m,1:n*k),n ,k)) == 0 a = a + 1; end end end function e = isingSum( config ) e = 0; si = size(config); for j = 1:si(2) for k = 1:si(1) S = config(k, j); nb = config(1+mod(k , si(1)), j) + config(k, 1+mod(j , si(2))); e = e + (-nb)*S; end end end
Formula
T(n, k) = 0 if n*k is odd.
Extensions
a(27) - a(45) from Manuel Kauers, Sep 07 2023
Comments