cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364790 Triangle read by rows: T(n, k) is the number of n X n symmetric Toeplitz matrices of rank k using all the integers 0, 1, 2, ..., n-1.

Original entry on oeis.org

1, 0, 2, 0, 0, 6, 0, 0, 1, 23, 0, 0, 0, 0, 120, 0, 0, 0, 0, 2, 718, 0, 0, 0, 0, 4, 31, 5005, 0, 0, 0, 0, 0, 2, 44, 40274, 0, 0, 0, 0, 0, 0, 4, 284, 362592, 0, 0, 0, 0, 0, 0, 0, 111, 769, 3627920, 0, 0, 0, 0, 0, 0, 2, 14, 244, 7056, 39909484, 0, 0, 0, 0, 0, 0, 0, 4, 64, 742, 9667, 478991123
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2023

Keywords

Examples

			The triangle begins:
  1;
  0, 2;
  0, 0, 6;
  0, 0, 1, 23;
  0, 0, 0,  0, 120;
  0, 0, 0,  0,   2, 718;
  0, 0, 0,  0,   4,  31, 5005;
  0, 0, 0,  0,   0,   2,   44, 40274;
  0, 0, 0,  0,   0,   0,    4,   284, 362592;
  ...
		

Crossrefs

Cf. A000142 (row sums), A358323 (minimal determinant), A358324 (maximal determinant), A358326 (minimal permanent), A358327 (maximal permanent), A364791 (right diagonal).

Programs

  • Mathematica
    T[n_, k_]:= Count[Table[MatrixRank[ToeplitzMatrix[Part[Permutations[Join[{0},Range[n-1]]], i]]], {i, n!}], k]; Join[{1},Table[T[n, k], {n,2,9}, {k, n}]]//Flatten
  • PARI
    MkMat(v)={matrix(#v, #v, i, j, v[1+abs(i-j)])}
    row(n)={if(n==1, [1], my(f=vector(n)); forperm(vector(n, i, i-1), v, f[matrank(MkMat(v))]++); f)} \\ Andrew Howroyd, Jan 07 2024

Extensions

Terms a(46) and beyond from Andrew Howroyd, Jan 07 2024