cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A364846 a(n) is the number of correct decimal digits of Pi obtained from the fraction A364844(n)/A364845(n).

Original entry on oeis.org

1, 3, 2, 2, 4, 4, 8, 6
Offset: 1

Views

Author

Stefano Spezia, Aug 10 2023

Keywords

Examples

			a(7) = 8 since A364844(7)/A364845(7) = 7327237/2332332 = 3.1415926206046... matches the first 8 digits of Pi: 3.1415926535897...
		

Crossrefs

A368619 a(n) is the n-digit denominator of the fraction h/k with h and k coprime palindrome positive integers at which abs(h/k-e) is minimal.

Original entry on oeis.org

1, 4, 323, 939, 14341, 61716, 1621261, 9192919, 324707423, 509838905, 30546664503, 59359795395, 3329737379233, 9164547454619
Offset: 1

Views

Author

Stefano Spezia, Jan 01 2024

Keywords

Comments

a(3) = 323 corresponds to the denominator of A368617.

Examples

			  n              fraction    approximated value
  -   -------------------    ------------------
  1                   3/1    3
  2                  11/4    2.75
  3               878/323    2.7182662538699...
  4              2552/939    2.7177848775292...
  5           38983/14341    2.7182902168607...
  6          167761/61716    2.7182740294251...
  7       4407044/1621261    2.7182816338640...
  8      24988942/9192919    2.7182815382143...
  9   882646288/324707423    2.7182818299783...
  ...
		

Crossrefs

Cf. A364845 (similar for Pi), A368620, A368621.

Programs

  • Mathematica
    a[1]=1; a[n_]:=Module[{minim = Infinity}, h = Select[Range[10^(n - 1), 10^n - 1], PalindromeQ]; lh = Length[h]; For[i = 1, i <= lh, i++, k = Select[Range[Floor[Part[h, i]/E], Ceiling[Part[h, i]/E]], PalindromeQ]; lk = Length[k]; For[j = 1, j <= lk, j++, If[(dist = Abs[Part[h, i]/Part[k, j] - E]) < minim && GCD[Part[h, i], Part[k, j]] == 1, minim = dist; kmin = Part[k, j]]]]; kmin]; Array[a,9]
  • PARI
    \\ See PARI program in Links

Extensions

a(10)-a(14) from David A. Corneth, Jan 03 2024

A364844 a(n) is the n-digit numerator of the fraction h/k with h and k coprime palindrome positive integers at which abs(h/k-Pi) is minimal.

Original entry on oeis.org

3, 22, 474, 1551, 36163, 292292, 7327237, 31311313
Offset: 1

Views

Author

Stefano Spezia, Aug 10 2023

Keywords

Comments

a(2) = 22 corresponds to the numerator of A068028.

Examples

			  n              fraction    approximated value
  -   -------------------    ------------------
  1                     3    3
  2                  22/7    3.1428571428571...
  3               474/151    3.1390728476821...
  4              1551/494    3.1396761133603...
  5           36163/11511    3.1416036834332...
  6          292292/93039    3.1416072829673...
  7       7327237/2332332    3.1415926206046...
  8      31311313/9966699    3.1415931192464...
  ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 8; a = {3}; hmin = kmin = 0; For[n = 2, n <= nmax, n++, minim = Infinity; h = Select[Range[10^(n - 1), 10^n - 1], PalindromeQ]; k = Select[Range[10^(n - 2), 10^n - 1], PalindromeQ]; lh = Length[h]; lk = Length[k]; For[i = 1, i <= lh, i++, For[j = 1, j <= lk, j++, If[(dist = Abs[Part[h, i]/Part[k, j] - Pi]) < minim && GCD[Part[h, i], Part[k, j]] == 1, minim = dist; hmin = Part[h, i]]]]; AppendTo[a, hmin]]; a

A380100 a(n) is the denominator of the fraction h/k with h and k coprime positive integers at which abs((h/k)^4-Pi) is minimal, with the numerator h of n digits.

Original entry on oeis.org

3, 73, 667, 7174, 10177, 379552, 3456676, 66066573, 223935013
Offset: 1

Views

Author

Stefano Spezia, Jan 12 2025

Keywords

Comments

a(1)^4 = 3^4 = 81 corresponds to the denominator of A210621.
It appears that the number of correct decimal digits of Pi obtained from the fraction A380099(n)/a(n) is A130773(n-1) for n > 1 (see Spezia in Links). - Stefano Spezia, Apr 20 2025

Examples

			  n               (h/k)^4    approximated value
  -   -------------------    ------------------
  1               (4/3)^4    3.1604938271604...
  2             (97/73)^4    3.1174212867620...
  3           (888/667)^4    3.1415829223858...
  4         (9551/7174)^4    3.1415927852873...
  5       (13549/10177)^4    3.1415926560044...
  ...
		

Crossrefs

Cf. A355623, A364845, A380099 (numerator).

Programs

  • Mathematica
    nmax = 3; a = {}; hmin = kmin = 0; For[n = 1, n <= nmax, n++, minim = Infinity; For[h = 10^(n-1), h <10^n, h++, For[k = 1, k < 10^n/Pi^(1/4), k++, If[(dist = Abs[h^4/k^4-Pi]) < minim && GCD[h,k]==1, minim = dist; hmin=h; kmin = k]]]; AppendTo[a, kmin]]; a

Extensions

a(6)-a(9) from Kritsada Moomuang, Apr 17 2025
Showing 1-4 of 4 results.