A364855 Initial digit of 3^(3^n) (A055777(n)).
3, 2, 1, 7, 4, 8, 6, 2, 2, 1, 3, 3, 6, 2, 1, 3, 3, 4, 6, 2, 2, 1, 1, 1, 5, 1, 2, 1, 1, 7, 4, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 7, 4, 8, 6, 2, 1, 2, 1, 3, 4, 1, 1, 1, 4, 8, 6, 2, 2, 1, 2, 2, 1, 5, 1, 6, 3, 3, 4, 1, 1, 2, 1, 5, 1, 4, 1
Offset: 0
Examples
a(2) = 1, since 3^(3^2) = 3^9 = 19683.
References
- A. Iorliam, Natural Laws (Benford's Law and Zipf's Law) For Network Traffic Analysis, In: Cybersecurity in Nigeria. SpringerBriefs in Cybersecurity. Springer, Cham (2019), 3-22. DOI: 10.1007/978-3-030-15210-9_2
Links
- Pointless Large numbers stuff by Cookiefonster, 2.03 The Weak Hyper-Operators.
- Wikipedia, Benford's law.
- Wikipedia, Zipf's law.
Programs
-
Mathematica
Join[{3},Table[Floor[3^(3^n)/10^Floor[Log10[3^(3^n)]]],{n,16}]]
Extensions
More terms from Jinyuan Wang, Aug 11 2023
Comments