cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364892 Row sums of A364891.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 4, 5, 8, 10, 15, 19, 27, 34, 47, 59, 79, 99, 130, 162, 210, 260, 332, 410, 517, 635, 794, 970, 1202, 1463, 1799, 2180, 2664, 3214, 3904, 4693, 5669, 6789, 8163, 9740, 11658, 13865, 16527, 19592, 23267, 27496, 32538, 38343, 45223, 53142, 62488
Offset: 1

Views

Author

Stefano Spezia, Aug 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A364891[n_, k_]:=(-1)^(k-1)*Sum[(-1)^j*(PartitionsP[n-j(2j+1)]-PartitionsP[n-(j+1)(2j+1)]), {j, 0, k-1}]; Table[Sum[A364891[n,k],{k,1,n}],{n,1,51}]

Formula

a(n) = Sum_{k=1..n} ((-1)^(k-1)*Sum_{j=0..k-1} (-1)^j*(p(n - j*(2*j + 1)) - p(n - (j + 1)*(2*j + 1)))), where p(n) = A000041(n) is the number of partitions of n.
Conjecture: lim_{n->oo} a(n)/A000041(n) = 1/4.