cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A364896 Decimal expansion of the 4-volume of the unit regular 120-cell.

Original entry on oeis.org

7, 8, 7, 8, 5, 6, 9, 8, 1, 0, 3, 4, 3, 3, 7, 9, 3, 3, 9, 9, 2, 1, 1, 6, 8, 5, 9, 1, 1, 3, 8, 8, 7, 4, 3, 6, 4, 9, 6, 4, 0, 8, 9, 8, 5, 8, 8, 1, 5, 3, 1, 4, 0, 8, 9, 0, 2, 7, 4, 5, 6, 3, 9, 5, 0, 3, 6, 0, 4, 3, 1, 3, 1, 4, 3, 6, 6, 3, 1, 1, 3, 5, 2, 1, 7, 9, 0, 5, 3, 9, 4, 7, 6, 7, 6, 0, 3, 7
Offset: 3

Views

Author

Jianing Song, Aug 12 2023

Keywords

Comments

Decimal expansion of (1575+705*sqrt(5))/4.

Examples

			Equals 787.85698103433793399211...
		

Crossrefs

Decimal expansion of 4-volumes: A364895 (5-cell), A000007 = 1 (8-cell or tesseract), A020793 = 1/6 (16-cell), A000038 = 2 (24-cell), this sequence (120-cell), A364897 (600-cell).
Cf. A102769 (decimal expansion of the volume of the unit regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[(1575 + 705*Sqrt[5])/4, 10, 100]] (* Paolo Xausa, Jun 12 2024 *)
  • PARI
    (1575+705*sqrt(5))/4

A364897 Decimal expansion of the 4-volume of the unit regular 600-cell.

Original entry on oeis.org

2, 6, 4, 7, 5, 4, 2, 4, 8, 5, 9, 3, 7, 3, 6, 8, 5, 6, 0, 2, 5, 5, 7, 3, 3, 5, 4, 2, 9, 5, 7, 0, 4, 7, 6, 4, 7, 1, 5, 0, 3, 8, 6, 4, 7, 4, 7, 5, 7, 2, 0, 3, 5, 7, 7, 6, 6, 9, 3, 1, 0, 7, 7, 8, 3, 8, 1, 5, 7, 5, 5, 7, 8, 5, 2, 3, 6, 2, 8, 0, 6, 2, 1, 3, 4, 0, 0, 9, 0, 0, 5, 2, 3, 6, 7, 3, 8, 9, 2
Offset: 2

Views

Author

Jianing Song, Aug 12 2023

Keywords

Comments

Decimal expansion of (50+25*sqrt(5))/4.

Examples

			Equals 26.47542485937368560255...
		

Crossrefs

Decimal expansion of 4-volumes: A364895 (5-cell), A000007 = 1 (8-cell or tesseract), A020793 = 1/6 (16-cell), A000038 = 2 (24-cell), A364896 (120-cell), this sequence (600-cell).
Cf. A102208 (decimal expansion of the volume of the unit regular icosahedron).

Programs

  • Mathematica
    First[RealDigits[(50 + 25*Sqrt[5])/4, 10, 100]] (* Paolo Xausa, Jun 12 2024 *)
  • PARI
    (50+25*sqrt(5))/4

A364900 The n-volume of the unit regular n-simplex is sqrt(a(n))/A364901(n), with a(n) being squarefree.

Original entry on oeis.org

1, 1, 3, 2, 5, 3, 7, 1, 1, 5, 11, 6, 13, 7, 15, 2, 17, 1, 19, 10, 21, 11, 23, 3, 1, 13, 3, 14, 29, 15, 31, 1, 33, 17, 35, 2, 37, 19, 39, 5, 41, 21, 43, 22, 5, 23, 47, 6, 1, 1, 51, 26, 53, 3, 55, 7, 57, 29, 59, 30, 61, 31, 7, 2, 65, 33, 67, 34, 69, 35, 71, 1, 73, 37, 3
Offset: 0

Views

Author

Jianing Song, Aug 12 2023

Keywords

Comments

a(n) = 1 if and only if n = 2*k^2 - 1 or n = 4*k^2 - 4*k for k >= 1.
a(n) = a(n+1) = 1 if and only if n = A001333(k)^2 - 2 for even k and A001333(k)^2 - 1 for odd k.

Examples

			  n |  the n-volume of the
    | unit regular n-simplex
  2 |  sqrt(3)/4 = A120011
  3 |  sqrt(2)/12 = A020829
  4 |  sqrt(5)/96 = A364895
  5 |  sqrt(3)/480
  6 |  sqrt(7)/5760
  7 |        1/20160
  8 |        1/215040
  9 |  sqrt(5)/5806080
		

Crossrefs

Programs

  • PARI
    a(n) = if(n%2, core((n+1)/2), core(n+1))

Formula

The n-volume of the unit regular n-simplex is sqrt(n+1)/(n!*2^(n/2)), so a(n) = A007913(n+1) for even n and A007913((n+1)/2) for odd n.

A364901 The n-volume of the unit regular n-simplex is sqrt(A364900(n))/a(n), with A364900(n) being squarefree.

Original entry on oeis.org

1, 1, 4, 12, 96, 480, 5760, 20160, 215040, 5806080, 116121600, 1277337600, 30656102400, 398529331200, 11158821273600, 83691159552000, 5356234211328000, 30351993864192000, 3278015337332736000, 62282291409321984000, 2491291656372879360000, 52317124783830466560000
Offset: 0

Views

Author

Jianing Song, Aug 12 2023

Keywords

Examples

			  n |  the n-volume of the
    | unit regular n-simplex
  2 |  sqrt(3)/4 = A120011
  3 |  sqrt(2)/12 = A020829
  4 |  sqrt(5)/96 = A364895
  5 |  sqrt(3)/480
  6 |  sqrt(7)/5760
  7 |        1/20160
  8 |        1/215040
  9 |  sqrt(5)/5806080
		

Crossrefs

Programs

  • PARI
    A000188(n) = sqrtint(n/core(n));
    a(n) = n! * if(n%2, 2^((n-1)/2)/A000188((n+1)/2), 2^(n/2)/A000188(n+1))

Formula

The n-volume of the unit regular n-simplex is sqrt(n+1)/(n!*2^(n/2)), so a(n) = n! * 2^(n/2) / A000188(n+1) for even n and n! * 2^((n-1)/2) / A000188((n+1)/2) for odd n. It's easy to see that a(n) is an integer.
Showing 1-4 of 4 results.