A364911 Triangle read by rows where T(n,k) is the number of integer partitions with sum <= n and with distinct parts summing to k.
1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 4, 2, 3, 2, 1, 5, 2, 5, 3, 3, 1, 6, 3, 8, 4, 4, 4, 1, 7, 3, 11, 6, 6, 6, 5, 1, 8, 4, 14, 9, 8, 10, 7, 6, 1, 9, 4, 19, 11, 11, 14, 11, 9, 8, 1, 10, 5, 23, 14, 15, 21, 15, 14, 11, 10, 1, 11, 5, 28, 17, 19, 28, 22, 20, 17, 15, 12
Offset: 0
Examples
Triangle begins: 1 1 1 1 2 1 1 3 1 2 1 4 2 3 2 1 5 2 5 3 3 1 6 3 8 4 4 4 1 7 3 11 6 6 6 5 1 8 4 14 9 8 10 7 6 1 9 4 19 11 11 14 11 9 8 1 10 5 23 14 15 21 15 14 11 10 1 11 5 28 17 19 28 22 20 17 15 12 1 12 6 34 21 22 40 28 28 24 24 17 15 1 13 6 40 25 27 50 38 37 34 35 27 22 18 1 14 7 46 29 32 65 49 50 43 51 38 35 26 22 1 15 7 54 33 38 79 62 63 59 68 55 50 41 32 27 Row n = 5 counts the following partitions: . 1 2 3 4 5 1+1 2+2 1+2 1+3 1+4 1+1+1 1+1+2 1+1+3 2+3 1+1+1+1 1+1+1+2 1+1+1+1+1 1+2+2 Row n = 5 counts the following positive linear combinations: . 1*1 1*2 1*3 1*4 1*5 2*1 2*2 1*2+1*1 1*3+1*1 1*3+1*2 3*1 1*2+2*1 1*3+2*1 1*4+1*1 4*1 1*2+3*1 5*1 2*2+1*1
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Crossrefs
Column n = k is A000009.
Column k = 0 is A000012.
Column k = 1 is A000027.
Row sums are A000070.
Column k = 2 is A008619.
Columns are partial sums of columns of A116861.
Column k = 3 appears to be the partial sums of A137719.
Diagonal n = 2k is A364910.
A114638 counts partitions where (length) = (sum of distinct parts).
A116608 counts partitions by number of distinct parts.
Programs
-
Mathematica
Table[Length[Select[Array[IntegerPartitions,n+1,0,Join],Total[Union[#]]==k&]],{n,0,9},{k,0,n}]
-
PARI
T(n)={[Vecrev(p) | p<-Vec(prod(k=1, n, 1 - y^k + y^k/(1 - x^k), 1/(1 - x) + O(x*x^n)))]} { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024
Formula
G.f.: A(x,y) = (1/(1 - x)) * Product_{k>=1} (1 - y^k + y^k/(1 - x^k)). - Andrew Howroyd, Jan 11 2024
Comments