A364912 Triangle read by rows where T(n,k) is the number of ways to write n as a positive linear combination of an integer partition of k.
1, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 4, 4, 5, 0, 1, 4, 8, 7, 7, 0, 1, 6, 13, 17, 12, 11, 0, 1, 6, 18, 28, 30, 19, 15, 0, 1, 8, 24, 50, 58, 53, 30, 22
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 2 0 1 2 3 0 1 4 4 5 0 1 4 8 7 7 0 1 6 13 17 12 11 0 1 6 18 28 30 19 15 0 1 8 24 50 58 53 30 22 Row n = 4 counts the following linear combinations: . 1*4 2*2 2*1+1*2 4*1 1*1+1*3 1*1+1*1+1*2 3*1+1*1 1*2+1*2 1*1+1*2+1*1 2*1+2*1 1*3+1*1 1*2+1*1+1*1 2*1+1*1+1*1 1*1+1*1+1*1+1*1 Row n = 5 counts the following linear combinations: . 1*5 1*1+1*4 2*1+1*3 3*1+1*2 5*1 1*2+1*3 2*2+1*1 2*1+1*1+1*2 4*1+1*1 1*3+1*2 1*1+1*1+1*3 2*1+1*2+1*1 3*1+2*1 1*4+1*1 1*1+1*2+1*2 1*1+1*1+1*1+1*2 3*1+1*1+1*1 1*1+1*3+1*1 1*1+1*1+1*2+1*1 2*1+2*1+1*1 1*2+1*1+1*2 1*1+1*2+1*1+1*1 2*1+1*1+1*1+1*1 1*2+1*2+1*1 1*2+1*1+1*1+1*1 1*1+1*1+1*1+1*1+1*1 1*3+1*1+1*1 Array begins: 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 4 4 6 6 8 8 3 4 8 13 18 24 33 40 5 7 17 28 50 70 107 143 7 12 30 58 108 179 286 428 11 19 53 109 223 394 696 1108 15 30 86 194 420 812 1512 2619
Links
- Steven R. Finch, Monoids of natural numbers, March 17, 2009.
Crossrefs
Row k = 0 is A000007.
Row k = 1 is A000012.
Column n = 0 is A000041.
Column n = 1 is A000070.
Row sums are A006951.
Row k = 2 is A052928 except initial terms.
The case of strict integer partitions is A116861.
Central column is T(2n,n) = A(n,n) = A364907(n).
With rows reversed we have the nonnegative version A365004.
A364913 counts combination-full partitions.
Programs
-
Mathematica
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Join@@Table[combp[n,ptn],{ptn,IntegerPartitions[k]}]],{n,0,6},{k,0,n}] - or - combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Join@@Table[combs[n-k,ptn],{ptn,IntegerPartitions[k]}]],{n,0,6},{k,0,n}]
Formula
As an array, also the number of ways to write n-k as a nonnegative linear combination of an integer partition of k (see programs).
Comments