cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A116861 Triangle read by rows: T(n,k) is the number of partitions of n such that the sum of the parts, counted without multiplicities, is equal to k (n>=1, k>=1).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 1, 3, 1, 1, 3, 1, 1, 4, 1, 0, 3, 2, 2, 2, 5, 1, 1, 3, 3, 2, 4, 2, 6, 1, 0, 5, 2, 3, 4, 4, 3, 8, 1, 1, 4, 3, 4, 7, 4, 5, 3, 10, 1, 0, 5, 3, 4, 7, 7, 6, 6, 5, 12, 1, 1, 6, 4, 3, 12, 6, 8, 7, 9, 5, 15, 1, 0, 6, 4, 5, 10, 10, 9, 10, 11, 10, 7, 18, 1, 1, 6, 4, 5, 15, 11, 13, 9, 16, 11, 13, 8, 22
Offset: 1

Views

Author

Emeric Deutsch, Feb 27 2006

Keywords

Comments

Conjecture: Reverse the rows of the table to get an infinite lower-triangular matrix b with 1's on the main diagonal. The third diagonal of the inverse of b is minus A137719. - George Beck, Oct 26 2019
Proof: The reversed rows yield the matrix I+N where N is strictly lower triangular, N[i,j] = 0 for j >= i, having its 2nd diagonal equal to the 2nd column (1, 0, 1, 0, 1, ...): N[i+1,i] = A000035(i), i >= 1, and 3rd diagonal equal to the 3rd column of this triangle, (2, 1, 2, 3, 3, 3, ...): N[i+2,i] = A137719(i), i >= 1. It is known that (I+N)^-1 = 1 - N + N^2 - N^3 +- .... Here N^2 has not only the second but also the 3rd diagonal zero, because N^2[i+2,i] = N[i+2,i+1]*N[i+1,i] = A000035(i+1)*A000035(i) = 0. Therefore the 3rd diagonal of (I+N)^-1 is equal to -A137719 without leading 0. - M. F. Hasler, Oct 27 2019
From Gus Wiseman, Aug 27 2023: (Start)
Also the number of ways to write n-k as a nonnegative linear combination of a strict integer partition of k. Also the number of ways to write n as a (strictly) positive linear combination of a strict integer partition of k. Row n=7 counts the following:
7*1 . 1*2+5*1 1*3+4*1 1*3+2*2 1*5+2*1 1*7
2*2+3*1 2*3+1*1 1*4+3*1 1*3+1*2+2*1 1*4+1*3
3*2+1*1 1*5+1*2
1*6+1*1
1*4+1*2+1*1
(End)

Examples

			T(10,7) = 4 because we have [6,1,1,1,1], [4,3,3], [4,2,2,1,1] and [4,2,1,1,1,1] (6+1=4+3=4+2+1=7).
Triangle starts:
  1;
  1, 1;
  1, 0, 2;
  1, 1, 1, 2;
  1, 0, 2, 1, 3;
  1, 1, 3, 1, 1,  4;
  1, 0, 3, 2, 2,  2, 5;
  1, 1, 3, 3, 2,  4, 2, 6;
  1, 0, 5, 2, 3,  4, 4, 3, 8;
  1, 1, 4, 3, 4,  7, 4, 5, 3, 10;
  1, 0, 5, 3, 4,  7, 7, 6, 6,  5, 12;
  1, 1, 6, 4, 3, 12, 6, 8, 7,  9,  5, 15;
  ...
		

Crossrefs

Cf. A000041 (row sums), A000009 (diagonal), A014153.
Cf. A114638 (count partitions with #parts = sum(distinct parts)).
Column 1: A000012, column 2: A000035(1..), column 3: A137719(1..).
For subsets instead of partitions we have A026820.
This statistic is ranked by A066328.
The central diagonal is T(2n,n) = A364910(n), non-strict A364907.
Partial sums of columns are columns of A364911.
Same as A364916 (offset 0) with rows reversed.
A008284 counts partitions by length, strict A008289.
A364912 counts linear combinations of partitions.
A364913 counts combination-full partitions, strict A364839.

Programs

  • Maple
    g:= -1+product(1+t^j*x^j/(1-x^j), j=1..40): gser:= simplify(series(g,x=0,18)): for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 14 do seq(coeff(P[n],t^j),j=1..n) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; local f, g, j;
          if n=0 then [1] elif i<1 then [ ] else f:= b(n, i-1);
             for j to n/i do
               f:= zip((x, y)->x+y, f, [0$i, b(n-i*j, i-1)[]], 0)
             od; f
          fi
        end:
    T:= n-> subsop(1=NULL, b(n, n))[]:
    seq(T(n), n=1..20);  # Alois P. Heinz, Feb 27 2013
  • Mathematica
    max = 14; s = Series[-1+Product[1+t^j*x^j/(1-x^j), {j, 1, max}], {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 17 2014 *)
    Table[Length[Select[IntegerPartitions[n],Total[Union[#]]==k&]],{n,0,10},{k,0,n}] (* Gus Wiseman, Aug 29 2023 *)
  • PARI
    A116861(n,k,s=0)={forpart(X=n,vecsum(Set(X))==k&&s++,k);s} \\ M. F. Hasler, Oct 27 2019

Formula

G.f.: -1 + Product_{j>=1} (1 + t^j*x^j/(1-x^j)).
Sum_{k=1..n} T(n,k) = A000041(n).
T(n,n) = A000009(n).
Sum_{k=1..n} k*T(n,k) = A014153(n-1).
T(n,1) = 1. T(n,2) = A000035(n+1). T(n,3) = A137719(n-2). - R. J. Mathar, Oct 27 2019
T(n,4) = A002264(n-1) + A121262(n). - R. J. Mathar, Oct 28 2019

A364350 Number of strict integer partitions of n such that no part can be written as a nonnegative linear combination of the others.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 3, 6, 5, 7, 6, 9, 7, 11, 10, 14, 12, 16, 15, 20, 17, 24, 22, 27, 29, 32, 30, 41, 36, 49, 45, 50, 52, 65, 63, 70, 77, 80, 83, 104, 98, 107, 116, 126, 134, 152, 148, 162, 180, 196, 195, 227, 227, 238, 272, 271, 293, 333, 325
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2023

Keywords

Comments

A way of writing n as a (presumed nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			The a(16) = 6 through a(22) = 12 strict partitions:
  (16)     (17)     (18)     (19)     (20)      (21)      (22)
  (9,7)    (9,8)    (10,8)   (10,9)   (11,9)    (12,9)    (13,9)
  (10,6)   (10,7)   (11,7)   (11,8)   (12,8)    (13,8)    (14,8)
  (11,5)   (11,6)   (13,5)   (12,7)   (13,7)    (15,6)    (15,7)
  (13,3)   (12,5)   (14,4)   (13,6)   (14,6)    (16,5)    (16,6)
  (7,5,4)  (13,4)   (7,6,5)  (14,5)   (17,3)    (17,4)    (17,5)
           (14,3)   (8,7,3)  (15,4)   (8,7,5)   (19,2)    (18,4)
           (15,2)            (16,3)   (9,6,5)   (11,10)   (19,3)
           (7,6,4)           (17,2)   (9,7,4)   (8,7,6)   (12,10)
                             (8,6,5)  (11,5,4)  (9,7,5)   (9,7,6)
                             (9,6,4)            (10,7,4)  (9,8,5)
                                                (10,8,3)  (7,6,5,4)
                                                (11,6,4)
                                                (11,7,3)
		

Crossrefs

For sums of subsets instead of combinations of partitions we have A151897.
For sums instead of combinations we have A237667, binary A236912.
For subsets instead of partitions we have A326083, complement A364914.
The complement in strict partitions is A364839, non-strict A364913.
A more strict variation is A364915.
The case of all positive coefficients is A365006.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A116861 and A364916 count linear combinations of strict partitions.
A323092 (ranks A320340) and A120641 count double-free partitions.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[combs[#[[k]],Delete[#,k]]=={},{k,Length[#]}]&]],{n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A364350(n):
        if n <= 1: return 1
        alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 1
        for p in partitions(n,k=n-1):
            if max(p.values(),default=0)==1:
                s = set(p)
                if not any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
                    c += 1
        return c # Chai Wah Wu, Sep 23 2023

Extensions

More terms and offset corrected by Martin Fuller, Sep 11 2023

A364916 Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 2, 0, 1, 0, 4, 1, 1, 3, 1, 1, 0, 5, 2, 2, 2, 3, 0, 1, 0, 6, 2, 4, 2, 3, 3, 1, 1, 0, 8, 3, 4, 4, 3, 2, 5, 0, 1, 0, 10, 3, 5, 4, 7, 4, 3, 4, 1, 1, 0, 12, 5, 6, 6, 7, 7, 4, 3, 5, 0, 1, 0, 15, 5, 9, 7, 8, 6, 12, 3, 4, 6, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
As a triangle, also the number of ways to write n as a *positive* linear combination of the parts of a strict integer partition of k.

Examples

			Array begins:
  1  1  1  2  2  3  4   5   6   8   10   12  15   18   22   27
  0  1  0  1  1  1  2   2   3   3   5    5   7    8    10   12
  0  1  1  2  1  2  4   4   5   6   9    10  13   15   19   23
  0  1  0  3  2  2  4   4   6   7   11   11  15   17   22   27
  0  1  1  3  3  3  7   7   8   10  16   17  23   27   33   42
  0  1  0  3  2  4  7   6   9   9   17   17  23   26   33   43
  0  1  1  5  3  4  12  10  13  16  26   27  36   42   52   68
  0  1  0  4  3  3  10  11  13  13  27   25  35   40   51   67
  0  1  1  5  4  5  15  13  19  20  36   37  51   58   72   97
  0  1  0  6  4  5  14  13  18  23  42   39  54   61   78   105
  0  1  1  6  4  6  20  17  23  25  54   50  69   80   98   138
  0  1  0  6  4  5  19  16  23  24  54   55  71   80   103  144
  0  1  1  8  6  7  27  23  30  35  72   70  103  113  139  199
  0  1  0  7  5  6  24  21  29  31  75   68  95   115  139  201
  0  1  1  8  5  7  31  27  36  39  90   86  122  137  178  255
  0  1  0  9  6  8  31  27  38  42  100  93  129  148  187  289
Triangle begins:
   1
   1  0
   1  1  0
   2  0  1  0
   2  1  1  1  0
   3  1  2  0  1  0
   4  1  1  3  1  1  0
   5  2  2  2  3  0  1  0
   6  2  4  2  3  3  1  1  0
   8  3  4  4  3  2  5  0  1  0
  10  3  5  4  7  4  3  4  1  1  0
  12  5  6  6  7  7  4  3  5  0  1  0
  15  5  9  7  8  6 12  3  4  6  1  1  0
  18  7 10 11 10  9 10 10  5  4  6  0  1  0
  22  8 13 11 16  9 13 11 15  5  4  6  1  1  0
  27 10 15 15 17 17 16 13 13 14  6  4  8  0  1  0
		

Crossrefs

Same as A116861 with offset 0 and rows reversed, non-strict version A364912.
Row n = 0 is A000009.
Row n = 1 is A096765.
Row n = 2 is A365005.
Column k = 0 is A000007.
Column k = 1 is A000012.
Column k = 2 is A000035.
Column k = 3 is A137719.
The main diagonal is A364910.
Left half has row sums A365002.
For not just strict partitions we have A365004, diagonal A364907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A066328 adds up distinct prime indices.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    t[n_,k_]:=Length[Join@@Table[combs[n,ptn],{ptn,Select[IntegerPartitions[k],UnsameQ@@#&]}]];
    Table[t[k,n-k],{n,0,15},{k,0,n}]

A364915 Number of integer partitions of n such that no distinct part can be written as a nonnegative linear combination of other distinct parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 12, 10, 16, 16, 19, 21, 29, 25, 37, 35, 44, 46, 60, 55, 75, 71, 90, 90, 114, 110, 140, 138, 167, 163, 217, 201, 248, 241, 298, 303, 359, 355, 425, 422, 520, 496, 594, 603, 715, 706, 834, 826, 968, 972, 1153, 1147, 1334, 1315, 1530
Offset: 0

Views

Author

Gus Wiseman, Aug 22 2023

Keywords

Examples

			The a(1) = 1 through a(10) = 8 partitions (A=10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    32     33      43       44        54         55
              1111  11111  222     52       53        72         64
                           111111  322      332       333        73
                                   1111111  2222      522        433
                                            11111111  3222       3322
                                                      111111111  22222
                                                                 1111111111
The partition (5,4,3) has no part that can be written as a nonnegative linear combination of the others, so is counted under a(12).
The partition (6,4,3,2) has 6=4+2, or 6=3+3, or 6=2+2+2, or 4=2+2, so is not counted under a(15).
		

Crossrefs

For sums instead of combinations we have A237667, binary A236912.
For subsets instead of partitions we have A326083, complement A364914.
The strict case is A364350.
The complement is A365068, strict A364839.
The positive case is A365072, strict A365006.
A000041 counts integer partitions, strict A000009.
A007865 counts binary sum-free sets w/ re-usable parts, complement A093971.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], Function[ptn,!Or@@Table[combs[ptn[[k]],Delete[ptn,k]]!={}, {k,Length[ptn]}]]@*Union]], {n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A364915(n):
        if n <= 1: return 1
        alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 1
        for p in partitions(n,k=n-1):
            s = set(p)
            if not any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
                c += 1
        return c # Chai Wah Wu, Sep 23 2023

Formula

a(n) = A000041(n) - A365068(n).

Extensions

a(37)-a(59) from Chai Wah Wu, Sep 25 2023

A364911 Triangle read by rows where T(n,k) is the number of integer partitions with sum <= n and with distinct parts summing to k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 4, 2, 3, 2, 1, 5, 2, 5, 3, 3, 1, 6, 3, 8, 4, 4, 4, 1, 7, 3, 11, 6, 6, 6, 5, 1, 8, 4, 14, 9, 8, 10, 7, 6, 1, 9, 4, 19, 11, 11, 14, 11, 9, 8, 1, 10, 5, 23, 14, 15, 21, 15, 14, 11, 10, 1, 11, 5, 28, 17, 19, 28, 22, 20, 17, 15, 12
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2023

Keywords

Comments

Also the number of ways to write any number up to n as a positive linear combination of a strict integer partition of k.

Examples

			Triangle begins:
  1
  1  1
  1  2  1
  1  3  1  2
  1  4  2  3  2
  1  5  2  5  3  3
  1  6  3  8  4  4  4
  1  7  3 11  6  6  6  5
  1  8  4 14  9  8 10  7  6
  1  9  4 19 11 11 14 11  9  8
  1 10  5 23 14 15 21 15 14 11 10
  1 11  5 28 17 19 28 22 20 17 15 12
  1 12  6 34 21 22 40 28 28 24 24 17 15
  1 13  6 40 25 27 50 38 37 34 35 27 22 18
  1 14  7 46 29 32 65 49 50 43 51 38 35 26 22
  1 15  7 54 33 38 79 62 63 59 68 55 50 41 32 27
Row n = 5 counts the following partitions:
    .    1           2     3         4       5
         1+1         2+2   1+2       1+3     1+4
         1+1+1             1+1+2     1+1+3   2+3
         1+1+1+1           1+1+1+2
         1+1+1+1+1         1+2+2
Row n = 5 counts the following positive linear combinations:
  .  1*1  1*2  1*3      1*4      1*5
     2*1  2*2  1*2+1*1  1*3+1*1  1*3+1*2
     3*1       1*2+2*1  1*3+2*1  1*4+1*1
     4*1       1*2+3*1
     5*1       2*2+1*1
		

Crossrefs

Column n = k is A000009.
Column k = 0 is A000012.
Column k = 1 is A000027.
Row sums are A000070.
Column k = 2 is A008619.
Columns are partial sums of columns of A116861.
Column k = 3 appears to be the partial sums of A137719.
Diagonal n = 2k is A364910.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A114638 counts partitions where (length) = (sum of distinct parts).
A116608 counts partitions by number of distinct parts.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    Table[Length[Select[Array[IntegerPartitions,n+1,0,Join],Total[Union[#]]==k&]],{n,0,9},{k,0,n}]
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(prod(k=1, n, 1 - y^k + y^k/(1 - x^k), 1/(1 - x) + O(x*x^n)))]}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024

Formula

G.f.: A(x,y) = (1/(1 - x)) * Product_{k>=1} (1 - y^k + y^k/(1 - x^k)). - Andrew Howroyd, Jan 11 2024

A364910 Number of integer partitions of 2n whose distinct parts sum to n.

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 12, 11, 19, 23, 54, 55, 103, 115, 178, 289, 389, 507, 757, 970, 1343, 2033, 2579, 3481, 4840, 6312, 8317, 10998, 15459, 19334, 26368, 33480, 44709, 56838, 74878, 93369, 128109, 157024, 206471, 258357, 338085, 417530, 544263, 669388, 859570, 1082758, 1367068
Offset: 0

Views

Author

Gus Wiseman, Aug 16 2023

Keywords

Comments

Also the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of n.

Examples

			The a(0) = 1 through a(7) = 11 partitions:
  ()  (11)  (22)  (33)     (44)      (55)       (66)         (77)
                  (2211)   (3311)    (3322)     (4422)       (4433)
                  (21111)  (311111)  (4411)     (5511)       (5522)
                                     (4111111)  (33321)      (6611)
                                                (42222)      (442211)
                                                (322221)     (4222211)
                                                (332211)     (4421111)
                                                (3222111)    (42221111)
                                                (3321111)    (422111111)
                                                (32211111)   (611111111)
                                                (51111111)   (4211111111)
                                                (321111111)
The a(0) = 1 through a(7) = 11 linear combinations:
  0  1*1  1*2  1*3      1*4      1*5      1*6          1*7
               0*2+3*1  0*3+4*1  0*4+5*1  0*4+3*2      0*6+7*1
               1*2+1*1  1*3+1*1  1*3+1*2  0*5+6*1      1*4+1*3
                                 1*4+1*1  1*4+1*2      1*5+1*2
                                          1*5+1*1      1*6+1*1
                                          0*3+0*2+6*1  0*4+0*2+7*1
                                          0*3+1*2+4*1  0*4+1*2+5*1
                                          0*3+2*2+2*1  0*4+2*2+3*1
                                          0*3+3*2+0*1  0*4+3*2+1*1
                                          1*3+0*2+3*1  1*4+0*2+3*1
                                          1*3+1*2+1*1  1*4+1*2+1*1
                                          2*3+0*2+0*1
		

Crossrefs

The case with no zero coefficients is A000009.
Central diagonal of A116861.
A version based on Heinz numbers is A364906.
Using all partitions (not just strict) we get A364907.
The version for compositions is A364908, strict A364909.
Main diagonal of A364916.
Using strict partitions of any number from 1 to n gives A365002.
These partitions have ranks A365003.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[2n],Total[Union[#]]==n&]],{n,0,15}]
  • PARI
    a(n) = {my(res = 0); forpart(p = 2*n,s = Set(p); if(vecsum(s) == n, res++)); res} \\ David A. Corneth, Aug 20 2023
    
  • Python
    from sympy.utilities.iterables import partitions
    def A364910(n): return sum(1 for d in partitions(n<<1,k=n) if sum(set(d))==n) # Chai Wah Wu, Sep 13 2023

Formula

a(n) = A116861(2n,n).
a(n) = A364916(n,n).

Extensions

More terms from David A. Corneth, Aug 20 2023

A365002 Number of ways to write n as a nonnegative linear combination of a strict integer partition.

Original entry on oeis.org

1, 1, 2, 4, 8, 10, 26, 32, 63, 84, 157, 207, 383, 477, 768, 1108, 1710, 2261, 3536, 4605, 6869, 9339, 13343, 17653, 25785, 33463, 46752, 61549, 85614, 110861, 153719, 197345, 268623, 346845, 463513, 593363, 797082, 1011403, 1335625, 1703143, 2232161, 2820539
Offset: 0

Views

Author

Gus Wiseman, Aug 22 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			The a(1) = 1 through a(5) = 10 ways:
  1*1  1*2  1*3      1*4      1*5
       2*1  3*1      2*2      5*1
            0*2+3*1  4*1      0*2+5*1
            1*2+1*1  0*2+4*1  0*3+5*1
                     0*3+4*1  0*4+5*1
                     1*2+2*1  1*2+3*1
                     1*3+1*1  1*3+1*2
                     2*2+0*1  1*3+2*1
                              1*4+1*1
                              2*2+1*1
		

Crossrefs

Row sums of lower-left half of A364916 as an array.
Column sums of right half of A364916 as a triangle.
For all positive coefficients we have A000041, non-strict A006951.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Sum[Length[combs[n,y]], {y,Select[Join@@IntegerPartitions/@Range[n], UnsameQ@@#&]}],{n,0,15}]
  • Python
    from itertools import combinations
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A365002(n):
        aset = Counter(tuple(sorted(set(p))) for p in partitions(n))
        return sum(sum(aset[t] for t in aset if set(t).issubset(set(q))) for l in range(1,n+1) for q in combinations(range(1,n+1),l) if sum(q)<=n) # Chai Wah Wu, Sep 20 2023

Extensions

a(16)-a(34) from Chai Wah Wu, Sep 20 2023
a(35)-a(38) from Chai Wah Wu, Sep 21 2023
a(0)=1 and a(39)-a(41) from Alois P. Heinz, Jan 11 2024

A365004 Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of an integer partition of k.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 2, 1, 0, 5, 4, 4, 1, 0, 7, 7, 8, 4, 1, 0, 11, 12, 17, 13, 6, 1, 0, 15, 19, 30, 28, 18, 6, 1, 0, 22, 30, 53, 58, 50, 24, 8, 1, 0, 30, 45, 86, 109, 108, 70, 33, 8, 1, 0, 42, 67, 139, 194, 223, 179, 107, 40, 10, 1, 0, 56, 97, 213, 328, 420, 394, 286, 143, 50, 10, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			Array begins:
  1  1  2   3   5    7     11
  0  1  2   4   7    12    19
  0  1  4   8   17   30    53
  0  1  4   13  28   58    109
  0  1  6   18  50   108   223
  0  1  6   24  70   179   394
  0  1  8   33  107  286   696
  0  1  8   40  143  428   1108
  0  1  10  50  199  628   1754
  0  1  10  61  254  882   2622
  0  1  12  72  332  1215  3857
  0  1  12  84  410  1624  5457
  0  1  14  99  517  2142  7637
The A(4,2) = 6 ways:
  2*2
  0*1+4*1
  1*1+3*1
  2*1+2*1
  3*1+1*1
  4*1+0*1
		

Crossrefs

Row n = 0 is A000041, strict A000009.
Row n = 1 is A000070.
Column k = 0 is A000007.
Column k = 1 is A000012.
Column k = 2 is A052928 except initial terms.
Antidiagonal sums are A006951.
The case of strict integer partitions is A116861.
Main diagonal is A364907.
The transpose is A364912, also the positive version.
A008284 counts partitions by length, strict A008289.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=0, 1, 0),
         `if`(i<1, 0, b(n, i-1, m)+add(b(n-i, min(i, n-i), m-i*j), j=0..m/i)))
        end:
    A:= (n, k)-> b(k$2, n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Jan 28 2024
  • Mathematica
    nn=5;
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    tabv=Table[Length[Join@@Table[combs[n,ptn],{ptn,IntegerPartitions[k]}]],{n,0,nn},{k,0,nn}]
    Table[tabv[[k+1,n-k+1]],{n,0,nn},{k,0,n}]

Formula

Also the number of ways to write n-k as a *positive* linear combination of an integer partition of k.

Extensions

Antidiagonals 8-11 from Alois P. Heinz, Jan 28 2024

A364907 Number of ways to write n as a nonnegative linear combination of an integer partition of n.

Original entry on oeis.org

1, 1, 4, 13, 50, 179, 696, 2619, 10119, 38867, 150407, 582065, 2260367, 8786919, 34225256, 133471650, 521216494, 2037608462, 7974105052, 31235316275, 122457794193, 480473181271, 1886555402750, 7412471695859, 29142658077266, 114643347181003, 451237737215201
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2023

Keywords

Comments

A way of writing n as a (presumed nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			The a(0) = 1 through a(3) = 13 ways:
  0  1*1  1*2      1*3
          0*1+2*1  0*2+3*1
          1*1+1*1  1*2+1*1
          2*1+0*1  0*1+0*1+3*1
                   0*1+1*1+2*1
                   0*1+2*1+1*1
                   0*1+3*1+0*1
                   1*1+0*1+2*1
                   1*1+1*1+1*1
                   1*1+2*1+0*1
                   2*1+0*1+1*1
                   2*1+1*1+0*1
                   3*1+0*1+0*1
		

Crossrefs

The case with no zero coefficients is A000041.
A finer version is A364906.
The version for compositions is A364908, strict A364909.
Using just strict partitions we get A364910, main diagonal of A364916.
Main diagonal of A365004.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=0, 1, 0),
         `if`(i<1, 0, b(n, i-1, m)+add(b(n-i, min(i, n-i), m-i*j), j=0..m/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..27);  # Alois P. Heinz, Jan 28 2024
  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Join@@Table[combs[n,ptn],{ptn,IntegerPartitions[n]}]],{n,0,5}]

Formula

a(n) = Sum_{m:A056239(m)=n} A364906(m).
a(n) = A364912(2n,n).
a(n) = A365004(n,n).

Extensions

a(9)-a(26) from Alois P. Heinz, Jan 28 2024

A365006 Number of strict integer partitions of n such that no part can be written as a (strictly) positive linear combination of the others.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 4, 4, 8, 4, 11, 9, 16, 14, 25, 20, 37, 31, 49, 47, 73, 64, 101, 96, 135, 133, 190, 181, 256, 253, 336, 342, 453, 452, 596, 609, 771, 803, 1014, 1041, 1309, 1362, 1674, 1760, 2151, 2249, 2736, 2884, 3449, 3661, 4366, 4615, 5486, 5825
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2023

Keywords

Comments

We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0.

Examples

			The a(8) = 2 through a(13) = 11 partitions:
  (8)    (9)      (10)       (11)       (12)       (13)
  (5,3)  (5,4)    (6,4)      (6,5)      (7,5)      (7,6)
         (7,2)    (7,3)      (7,4)      (5,4,3)    (8,5)
         (4,3,2)  (4,3,2,1)  (8,3)      (5,4,2,1)  (9,4)
                             (9,2)                 (10,3)
                             (5,4,2)               (11,2)
                             (6,3,2)               (6,4,3)
                             (5,3,2,1)             (6,5,2)
                                                   (7,4,2)
                                                   (5,4,3,1)
                                                   (6,4,2,1)
		

Crossrefs

The nonnegative version for subsets appears to be A124506.
For sums instead of combinations we have A364349, binary A364533.
The nonnegative version is A364350, complement A364839.
For subsets instead of partitions we have A365044, complement A365043.
The non-strict version is A365072, nonnegative A364915.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[combp[#[[k]],Delete[#,k]]=={},{k,Length[#]}]&]],{n,0,30}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365006(n):
        if n <= 1: return 1
        alist = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)]
        c = 1
        for p in partitions(n,k=n-1):
            if max(p.values()) == 1:
                s = set(p)
                for q in s:
                    if tuple(sorted(s-{q})) in alist[q]:
                        break
                else:
                    c += 1
        return c # Chai Wah Wu, Sep 20 2023

Extensions

a(31)-a(56) from Chai Wah Wu, Sep 20 2023
Showing 1-10 of 15 results. Next