A364129 Order of Aut^3(C_n) = Aut(Aut(Aut(C_n))), where C_n is the cyclic group of order n.
1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 2, 6, 6, 1, 8, 8, 8, 1, 2, 8, 12, 2, 4, 336, 8, 6, 2, 12, 12, 8, 8, 64, 24, 8, 64, 12, 12, 2, 64, 1152, 192, 12, 12, 24, 64, 4, 10, 1152, 12, 8, 768, 64, 16, 2, 128, 336, 24, 12, 12, 1152, 192, 8, 576, 768, 768, 24, 24, 768, 48, 64, 16, 336, 336, 12, 128, 24, 192, 64, 16, 6144
Offset: 1
Examples
a(24) = 336 since Aut(C_24) = C_2 X C_2 X C_2, Aut^2(C_24) = PSL(2,7) and Aut(Aut(Aut(C_24))) = PGL(2,7). a(32) = 64 since Aut(C_32) = C_2 X C_8, Aut^2(C_32) = C_2 X D_8 and Aut^3(C_32) = SmallGroup(64,138). a(40) = 1152 since Aut(C_40) = C_2 X C_2 X C_4, Aut^2(C_40) = SmallGroup(192,1493) and Aut^3(C_40) = C_2 X SmallGroup(576,8654).
Links
- Jianing Song, Table of n, a(n) for n = 1..200
- Jianing Song, Structure and SmallGroupId of Aut^3(C_n) for n <= 100
Crossrefs
Programs
-
GAP
A364129 := function(n) local G, i, L; G := CyclicGroup(n); for i in [1..3] do G := AutomorphismGroup(G); if i = 3 then return Size(G); fi; L := DirectFactorsOfGroup(G); if List(L, x->IdGroupsAvailable(Size(x))) = List(L, x->true) then L := List(L, x->IdGroup(x)); G := DirectProduct(List(L, x->SmallGroup(x))); # It's more efficient to operate on abstract groups when the abstract structure is available fi; od; end;
Comments