cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A364942 E.g.f. satisfies A(x) = exp( x*A(x)^2 / (1 - x*A(x))^3 ).

Original entry on oeis.org

1, 1, 11, 193, 5037, 176221, 7755433, 411995529, 25665442841, 1835264297881, 148192928581581, 13338664928207389, 1324344628799752981, 143792046846092303829, 16949599953405295395521, 2155710634160924802161041, 294250014166281073851809457
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n+k+1)^(k-1)*binomial(n+2*k-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n+k+1)^(k-1) * binomial(n+2*k-1,n-k)/k!.

A365033 E.g.f. satisfies A(x) = exp(x * A(x)^2 * (1 + x * A(x))^2).

Original entry on oeis.org

1, 1, 9, 127, 2769, 80861, 2976733, 132394011, 6909143265, 414041227417, 28025981914581, 2115049310887679, 176095675272002929, 16035108243371426613, 1585349332849711046829, 169128107565128349122851, 19365426435579375683158977, 2368882573995841615546652081
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n+k+1)^(k-1)*binomial(2*k, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n+k+1)^(k-1) * binomial(2*k,n-k)/k!.
Showing 1-2 of 2 results.