cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364938 E.g.f. satisfies A(x) = exp( x / (1 - x*A(x))^3 ).

Original entry on oeis.org

1, 1, 7, 73, 1141, 23821, 623341, 19650793, 725478601, 30714824377, 1467394945561, 78103975313101, 4583805610661245, 294093243091237669, 20479664124384110101, 1538423857251845781841, 124007828871708989798161, 10676865465119963987425009
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n! * Sum[(n-k+1)^(k-1) * Binomial[n+2*k-1,n-k]/k!, {k,0,n}], {n,1,20}]] (* Vaclav Kotesovec, Nov 18 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n, (n-k+1)^(k-1)*binomial(n+2*k-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n-k+1)^(k-1) * binomial(n+2*k-1,n-k)/k!.
a(n) ~ sqrt(s*(1 + 2*r*s) / (4 + 3*r - 12*r*s + 12*r^2*s^2 - 4*r^3*s^3)) * n^(n-1) / (exp(n) * r^n), where r = 0.1811100305436879929789759231994897963241226689... and s = 1.893740207738561813713992833266450862854198944672... are real roots of the system of equations exp(r/(1 - r*s)^3) = s, 3*s*r^2 = (1 - r*s)^4. - Vaclav Kotesovec, Nov 18 2023

A364941 E.g.f. satisfies A(x) = exp( x*A(x)^2 / (1 - x*A(x))^2 ).

Original entry on oeis.org

1, 1, 9, 139, 3201, 98861, 3842653, 180342471, 9926870145, 627296384665, 44766115252821, 3561306199330859, 312531347680052449, 29994317717748851013, 3125271184480991706189, 351360521075659460743471, 42395667639523579933634817, 5464885215245368415146646321
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n! * Sum[(n+k+1)^(k-1) * Binomial[n+k-1,n-k]/k!, {k,0,n}], {n,1,20}]] (* Vaclav Kotesovec, Nov 18 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n, (n+k+1)^(k-1)*binomial(n+k-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n+k+1)^(k-1) * binomial(n+k-1,n-k)/k!.
a(n) ~ s^2 * sqrt((1 + r*s)/(1 + 2*r*s^2 - 3*r^2*s^2 + 2*r^3*s^3)) * n^(n-1) / (exp(n) * r^(n - 1/2)), where r = 0.1208150626316801846776206051780724146363... and s = 1.505405324736640697527292770220289316454393380356... are real roots of the system of equations exp(r*s^2 / (1 - r*s)^2) = s, 2*r*s^2 = (1 - r*s)^3. - Vaclav Kotesovec, Nov 18 2023

A365034 E.g.f. satisfies A(x) = exp(x * A(x)^2 * (1 + x * A(x))^3).

Original entry on oeis.org

1, 1, 11, 175, 4317, 142561, 5929513, 297901899, 17557448681, 1188110627137, 90804918357261, 7737033497254579, 727253150819898541, 74760871323339663489, 8344094871249960257009, 1004872166403751985971291, 129883465213311163328142417
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n+k+1)^(k-1)*binomial(3*k, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n+k+1)^(k-1) * binomial(3*k,n-k)/k!.
Showing 1-3 of 3 results.