cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364958 Fixed points of A356867, where A356867 is Sycamore's Doudna variant D(3).

Original entry on oeis.org

1, 2, 3, 6, 8, 9, 18, 24, 27, 54, 72, 81, 91, 162, 216, 243, 273, 486, 648, 729, 819, 1458, 1944, 2187, 2457, 4374, 5832, 6561, 7371, 13122, 17496, 19683, 22113, 39366, 52488, 59049, 66339, 118098, 157464, 177147, 199017, 354294, 472392, 531441, 597051, 1062882, 1417176, 1594323, 1791153, 3188646, 4251528, 4782969
Offset: 1

Views

Author

Keywords

Comments

Conjecture: All terms are of the form k*3^n, where k = 1,2,8,91, and n >= 0. - David James Sycamore, Aug 16 2023

Crossrefs

Fixed points of A356867 and of A365390, positions of 0's in A365462.

Programs

  • Mathematica
    Block[{a, c, i, j, k, m, p, t, nn},
      nn = 3^12; m = 1; i = 2; p = Prime[i]; c[_] = False;
      Monitor[Reap[Do[Set[{m, k}, {1, n - p^Floor[Log[p, n]]}];
        If[k == 0, Sow[n]; Set[{a[n], c[n]}, {n, True}],
          While[Set[t, Prime[m] a[k]]; Or[m == i, c[t]], m++];
          If[t == n, Sow[n]]; Set[{a[n], c[t]}, {t, True}] ],
    {n, nn}] ][[-1, 1]], n] ] (* Michael De Vlieger, Jul 02 2025 *)
  • PARI
    up_to = 3^14;
    A356867list(up_to) = { my(v=vector(up_to),met=Map(),h=0,ak); for(i=1,#v,if(1==vecsum(digits(i,3)), v[i] = i; h = i, ak = v[i-h]; forprime(p=2,,if(3!=p && !mapisdefined(met,p*ak), v[i] = p*ak; break))); mapput(met,v[i],i)); (v); };
    v356867 = A356867list(up_to);
    A356867(n) = v356867[n];
    isA364958(n) = (A356867(n)==n);

Formula

{k | k==A356867(k)}.