cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A161633 E.g.f. satisfies A(x) = 1/(1 - x*exp(x*A(x))).

Original entry on oeis.org

1, 1, 4, 27, 268, 3525, 57966, 1146061, 26500552, 702069129, 20974309210, 697754762001, 25584428686620, 1025230366195789, 44579963354153878, 2090676600895922565, 105191995364927688976, 5652501986238910061073, 323083811850594613809714, 19573120681427758058921881
Offset: 0

Views

Author

Paul D. Hanna, Jun 18 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 268*x^4/4! + 3525*x^5/5! +...
exp(x*A(x)) = 1 + x + 3*x^2/2! + 19*x^3/3! + 181*x^4/4! + 2321*x^5/5! +...
		

Crossrefs

Cf. A006153, A161630 (e.g.f. = exp(x*A(x))), A213644, A364980, A364981.

Programs

  • Mathematica
    Flatten[{1,Table[n!*Sum[Binomial[n+1,k]/(n+1) * k^(n-k)/(n-k)!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jan 10 2014 *)
  • PARI
    a(n,m=1)=n!*sum(k=0,n,binomial(n+m,k)*m/(n+m)*k^(n-k)/(n-k)!)

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = 1 + x*A(x)*exp(x*A(x)).
(2) A(x) = (1/x) * Series_Reversion( x/(1 + x*exp(x)) ).
(3) A(x) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n/n! * A(x)^n * exp(-(n+m-1)*x*A(x)) for all fixed nonnegative m.
a(n) = n! * Sum_{k=0..n} binomial(n+1,k)/(n+1) * k^(n-k)/(n-k)!.
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n! then a(n,m) = n! * Sum_{k=0..n} binomial(n+m,k)*m/(n+m) * k^(n-k)/(n-k)!.
a(n) ~ n^(n-1) * c * ((c-1)*c)^(n+1/2) / (sqrt(2*c-1) * exp(n)), where c = 1 + 1/(2*LambertW(1/2)) = 2.4215299358831166... - Vaclav Kotesovec, Jan 10 2014

A364980 E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x*A(x)^2).

Original entry on oeis.org

1, 1, 4, 33, 412, 6945, 147846, 3807601, 115151464, 4001162913, 157096369450, 6878742553881, 332361857826780, 17566215943990753, 1008161606338206334, 62440146891413434305, 4151012174991960338896, 294834882756167048975553
Offset: 0

Views

Author

Seiichi Manyama, Aug 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n! * Sum[k^(n-k) * Binomial[2*n-k+1,k] / ((2*n-k+1)*(n-k)!), {k,0,n}], {n,1,20}]] (* Vaclav Kotesovec, Nov 18 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*n-k+1, k)/((2*n-k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(2*n-k+1,k)/( (2*n-k+1)*(n-k)! ).
a(n) ~ sqrt((1 + r*s^2)/(6 + 4*r*s^2)) * n^(n-1) / (exp(n) * r^(n + 1/2)), where r = 0.2190923703746024362724546703711998154573791458000... and s = 1.747404632046819382844696016554403302840973484745... are real roots of the system of equations 1 + exp(r*s^2)*r*s = s, 2*r*s^2*(s-1) = 1. - Vaclav Kotesovec, Nov 18 2023

A364938 E.g.f. satisfies A(x) = exp( x / (1 - x*A(x))^3 ).

Original entry on oeis.org

1, 1, 7, 73, 1141, 23821, 623341, 19650793, 725478601, 30714824377, 1467394945561, 78103975313101, 4583805610661245, 294093243091237669, 20479664124384110101, 1538423857251845781841, 124007828871708989798161, 10676865465119963987425009
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n! * Sum[(n-k+1)^(k-1) * Binomial[n+2*k-1,n-k]/k!, {k,0,n}], {n,1,20}]] (* Vaclav Kotesovec, Nov 18 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n, (n-k+1)^(k-1)*binomial(n+2*k-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n-k+1)^(k-1) * binomial(n+2*k-1,n-k)/k!.
a(n) ~ sqrt(s*(1 + 2*r*s) / (4 + 3*r - 12*r*s + 12*r^2*s^2 - 4*r^3*s^3)) * n^(n-1) / (exp(n) * r^n), where r = 0.1811100305436879929789759231994897963241226689... and s = 1.893740207738561813713992833266450862854198944672... are real roots of the system of equations exp(r/(1 - r*s)^3) = s, 3*s*r^2 = (1 - r*s)^4. - Vaclav Kotesovec, Nov 18 2023

A377545 E.g.f. satisfies A(x) = 1/(1 - x * exp(x*A(x)))^3.

Original entry on oeis.org

1, 3, 18, 195, 3108, 65595, 1730538, 54891165, 2036187576, 86536398195, 4147191867630, 221314773837333, 13017260705093604, 836754118106509083, 58364080427471191506, 4390560359156841730605, 354356981533262814367728, 30543768949098926368973667, 2800395449868306713606542422
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*n!*sum(k=0, n, k^(n-k)*binomial(3*n-2*k+3, k)/((3*n-2*k+3)*(n-k)!));

Formula

E.g.f.: B(x)^3, where B(x) is the e.g.f. of A364981.
a(n) = 3 * n! * Sum_{k=0..n} k^(n-k) * binomial(3*n-2*k+3,k)/( (3*n-2*k+3)*(n-k)! ).

A377550 E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x*A(x)^4).

Original entry on oeis.org

1, 1, 4, 45, 772, 17865, 525966, 18794881, 790175128, 38221092657, 2091074167450, 127675964340441, 8606833626646740, 634928943628432921, 50878715440232312374, 4400937219238706030865, 408700742920092110904496, 40558224679468186878237153, 4283310197644529184427059378
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4*n-3*k+1, k)/((4*n-3*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(4*n-3*k+1,k)/( (4*n-3*k+1)*(n-k)! ).
Showing 1-5 of 5 results.