cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365012 E.g.f. satisfies A(x) = exp( x*A(x)/(1 - x * A(x)^2) ).

Original entry on oeis.org

1, 1, 5, 52, 833, 18116, 498907, 16648402, 653034545, 29450331928, 1501456530131, 85398143019014, 5361130115439529, 368227694339818132, 27468201247134068891, 2211469648218676671466, 191131823105565504395873, 17650493961604405811144624
Offset: 0

Views

Author

Seiichi Manyama, Aug 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#!*Sum[ (2 # - k + 1)^(k - 1)*Binomial[# - 1, # - k]/k!, {k, 0, #}] &, 19, 0] (* Michael De Vlieger, Aug 18 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n, (2*n-k+1)^(k-1)*binomial(n-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (2*n-k+1)^(k-1) * binomial(n-1,n-k)/k!.

A363356 E.g.f. satisfies A(x) = exp(x * A(x) * (1 + x * A(x)^3)).

Original entry on oeis.org

1, 1, 5, 52, 821, 17536, 473497, 15476224, 594230345, 26221431808, 1307680266221, 72739285725184, 4465197522732157, 299855584017743872, 21867349264346912705, 1721013285639521959936, 145394112130209844644113, 13123788855563296766427136
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (3*n-2*k+1)^(k-1)*binomial(k, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (3*n-2*k+1)^(k-1) * binomial(k,n-k)/k!.
Showing 1-2 of 2 results.