A365073 Number of subsets of {1..n} that can be linearly combined using nonnegative coefficients to obtain n.
1, 1, 3, 6, 14, 26, 60, 112, 244, 480, 992, 1944, 4048, 7936, 16176, 32320, 65088, 129504, 261248, 520448, 1046208, 2090240, 4186624, 8365696, 16766464, 33503744, 67064064, 134113280, 268347392, 536546816, 1073575936, 2146703360, 4294425600, 8588476416, 17178349568
Offset: 0
Keywords
Examples
The subset {2,3,6} has 7 = 2*2 + 1*3 + 0*6 so is counted under a(7). The a(1) = 1 through a(4) = 14 subsets: {1} {1} {1} {1} {2} {3} {2} {1,2} {1,2} {4} {1,3} {1,2} {2,3} {1,3} {1,2,3} {1,4} {2,3} {2,4} {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- Steven R. Finch, Monoids of natural numbers, March 17, 2009.
Crossrefs
Programs
-
Mathematica
combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Select[Subsets[Range[n]],combs[n,#]!={}&]],{n,0,5}]
-
PARI
a(n)={ my(comb(k,b)=while(b>>k, b=bitor(b, b>>k); k*=2); b); my(recurse(k,b)= if(bittest(b,0), 2^(n+1-k), if(2*k>n, 2^(n+1-k) - 2^sum(j=k, n, !bittest(b,j)), self()(k+1, b) + self()(k+1, comb(k,b)) ))); recurse(1, 1<
Andrew Howroyd, Sep 04 2023
Extensions
Terms a(12) and beyond from Andrew Howroyd, Sep 04 2023