cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A365120 G.f. A(x) satisfies A(x) = (1 + x / (1 - x*A(x))^2)^2.

Original entry on oeis.org

1, 2, 5, 18, 70, 294, 1291, 5864, 27314, 129766, 626367, 3063096, 15143562, 75563924, 380062186, 1924840480, 9807649900, 50241194250, 258597717591, 1336730670244, 6936403057274, 36119232561000, 188677598254078, 988464846388710, 5192270327405662
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=2) = sum(k=0, n, binomial(t*(n-k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));

Formula

If g.f. satisfies A(x) = (1 + x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*(n-k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A367236. - Seiichi Manyama, Dec 06 2024

A365122 G.f. A(x) satisfies A(x) = (1 + x / (1 - x*A(x))^3)^3.

Original entry on oeis.org

1, 3, 12, 64, 372, 2319, 15105, 101649, 701073, 4929657, 35207220, 254690517, 1862325262, 13742311074, 102204992352, 765328009950, 5765316776550, 43661497944861, 332217854059362, 2538540859615095, 19471592691620310, 149871698475060433, 1157188723053901449
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=3) = sum(k=0, n, binomial(t*(n-k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));

Formula

If g.f. satisfies A(x) = (1 + x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*(n-k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
G.f.: A(x) = B(x)^3 where B(x) is the g.f. of A371616. - Seiichi Manyama, Dec 06 2024

A365134 G.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^2)^3.

Original entry on oeis.org

1, 3, 18, 130, 1041, 8889, 79310, 730593, 6895575, 66337179, 648087750, 6412437474, 64125877361, 647102364990, 6581050832082, 67384499298690, 694077333315363, 7186898222178342, 74767377019254450, 781105293655408554, 8191332027277068543
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=3) = sum(k=0, n, binomial(t*(n+1), k)*binomial(n+(s-1)*k-1, n-k))/(n+1);

Formula

If g.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^s)^t, then a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(t*(n+1),k) * binomial(n+(s-1)*k-1,n-k).

A365149 G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^2 )^3.

Original entry on oeis.org

1, 3, 27, 301, 3780, 51030, 723170, 10611594, 159845946, 2457515235, 38406398016, 608330707740, 9744053489754, 157564967282709, 2568706865998272, 42173100349112852, 696692754641035014, 11572241797209975966, 193153224033985241217
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=3) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n+k+1));

Formula

If g.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n+k+1).
Showing 1-4 of 4 results.