cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365121 G.f. A(x) satisfies A(x) = (1 + x / (1 - x*A(x))^2)^3.

Original entry on oeis.org

1, 3, 9, 40, 192, 993, 5375, 30081, 172650, 1010640, 6010530, 36214656, 220590082, 1356131892, 8403647454, 52436122717, 329170499604, 2077465903503, 13173914483799, 83897445169341, 536355204428412, 3440875097256529, 22144300030907667
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=3) = sum(k=0, n, binomial(t*(n-k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));

Formula

If g.f. satisfies A(x) = (1 + x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*(n-k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
G.f.: A(x) = B(x)^3 where B(x) is the g.f. of A367242. - Seiichi Manyama, Dec 06 2024

A365136 G.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^3)^3.

Original entry on oeis.org

1, 3, 21, 172, 1563, 15141, 153240, 1601160, 17140686, 187026210, 2072333697, 23255417925, 263757940688, 3018654757212, 34817822871933, 404324843585061, 4723248984803013, 55467143334798210, 654435356605769574, 7753961433310798095, 92220463998917459652
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=3) = sum(k=0, n, binomial(t*(n+1), k)*binomial(n+(s-1)*k-1, n-k))/(n+1);

Formula

If g.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^s)^t, then a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(t*(n+1),k) * binomial(n+(s-1)*k-1,n-k).
Showing 1-2 of 2 results.